Structural monitoring plays a key role for underground structures such as tunnels. Strain readings are expected to report structural conditions during construction and at the final delivery of the works. Furthermore, it is increasingly requested an extension to long-term monitoring from contractors with possible use of the same system in service during construction. A robust and efficient monitoring methodology from discrete strain measurements is the inverse finite element method (iFEM), which allows to reconstruct the structural response without input data on the load pattern applied to the structure as well as material and inertial properties of the elements and therefore it is interesting for structural configurations affected by uncertain loading conditions, such as the tunnel. The formulation presented in this paper, based on the iFEM theory, is improved from the previous work available in literature for both the shape functions used and the computational procedure. Indeed, the approach allows to overcome inconsistencies related to structural loading conditions and a pseudo-inverse matrix preserve all the rigid body modes without imposing specific constraints which is typical for tunnels. Numerical validation of the iFEM procedure is performed by simulating the input data coming from a tunnel working in a heterogeneous soil under different loading conditions with direct FEM analysis.

A new approach for displacement and stress monitoring of tunnel based on iFEM methodology / Savino, Pierclaudio; Tondolo, Francesco. - In: SMART MATERIALS AND STRUCTURES. - ISSN 0964-1726. - ELETTRONICO. - 31:1(2022). [10.1088/1361-665X/ac3901]

A new approach for displacement and stress monitoring of tunnel based on iFEM methodology

Savino, Pierclaudio;Tondolo, Francesco
2022

Abstract

Structural monitoring plays a key role for underground structures such as tunnels. Strain readings are expected to report structural conditions during construction and at the final delivery of the works. Furthermore, it is increasingly requested an extension to long-term monitoring from contractors with possible use of the same system in service during construction. A robust and efficient monitoring methodology from discrete strain measurements is the inverse finite element method (iFEM), which allows to reconstruct the structural response without input data on the load pattern applied to the structure as well as material and inertial properties of the elements and therefore it is interesting for structural configurations affected by uncertain loading conditions, such as the tunnel. The formulation presented in this paper, based on the iFEM theory, is improved from the previous work available in literature for both the shape functions used and the computational procedure. Indeed, the approach allows to overcome inconsistencies related to structural loading conditions and a pseudo-inverse matrix preserve all the rigid body modes without imposing specific constraints which is typical for tunnels. Numerical validation of the iFEM procedure is performed by simulating the input data coming from a tunnel working in a heterogeneous soil under different loading conditions with direct FEM analysis.
File in questo prodotto:
File Dimensione Formato  
A new approach for displacement and stress monitoring of tunnel based on iFEM methodology.pdf

Open Access dal 24/11/2022

Descrizione: Articolo
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri
A new approach for displacement and stress monitoring of tunnel based on iFEM methodology.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2940172