Calcium phosphates (CaPs) are biocompatible and biodegradable materials showing a great promise in bone regeneration as good alternative to the use of auto-and allografts to guide and support tissue regeneration in critically-sized bone defects. This can be certainly attributed to their similarity to the mineral phase of natural bone. Among CaPs, hydroxyapatite (HA) deserves a special attention as it, actually is the main inorganic component of bone tissue. This review offers a comprehensive overview of past and current trends in the use of HA as grafting material, with a focus on manufacturing strategies and their effect on the mechanical properties of the final products. Recent advances in materials processing allowed the production of HA-based grafts in different forms, thus meeting the requirements for a range of clinical applications and achieving enthusiastic results both in vitro and in vivo. Furthermore, the growing interest in the optimization of three-dimensional (3D) porous grafts, mimicking the trabecular architecture of human bone, has opened up new challenges in the development of bone-like scaffolds showing suitable mechanical performances for potential use in load bearing anatomical sites.

Hydroxyapatite for biomedical applications: A short overview / Fiume, E.; Magnaterra, G.; Rahdar, A.; Verne', E.; Baino, F.. - In: CERAMICS. - ISSN 2571-6131. - ELETTRONICO. - 4:4(2021), pp. 542-563. [10.3390/ceramics4040039]

Hydroxyapatite for biomedical applications: A short overview

Fiume E.;Verne' E.;Baino F.
2021

Abstract

Calcium phosphates (CaPs) are biocompatible and biodegradable materials showing a great promise in bone regeneration as good alternative to the use of auto-and allografts to guide and support tissue regeneration in critically-sized bone defects. This can be certainly attributed to their similarity to the mineral phase of natural bone. Among CaPs, hydroxyapatite (HA) deserves a special attention as it, actually is the main inorganic component of bone tissue. This review offers a comprehensive overview of past and current trends in the use of HA as grafting material, with a focus on manufacturing strategies and their effect on the mechanical properties of the final products. Recent advances in materials processing allowed the production of HA-based grafts in different forms, thus meeting the requirements for a range of clinical applications and achieving enthusiastic results both in vitro and in vivo. Furthermore, the growing interest in the optimization of three-dimensional (3D) porous grafts, mimicking the trabecular architecture of human bone, has opened up new challenges in the development of bone-like scaffolds showing suitable mechanical performances for potential use in load bearing anatomical sites.
2021
File in questo prodotto:
File Dimensione Formato  
Review HAp_Ceramics 2021.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2937032