Predictive maintenance is an ever-growing topic of interest, spanning different fields and approaches. In the automotive domain, thanks to on-board sensors and the possibility to transmit collected data to the cloud, car manufacturers can deploy predictive maintenance solutions to prevent components malfunctioning and eventually recall to the service the vehicle before the customer experiences the failure. In this paper we present PREPIPE, a data-driven pipeline for predictive maintenance. Given the raw time series of signals recorded by the on-board engine control unit of diesel engines, we exploit PREPIPE to predict the clogging status of the oxygen sensor, a key component of the exhaust system to control combustion efficiency and pollutant emissions. In the design of PREPIPE we deeply investigate: (i) how to choose the best subset of signals to best capture the sensor status, (ii) how much data needs to be collected to make the most accurate prediction, (iii) how to transform the original time series into features suitable for state-of-art classifiers, (iv) how to select the most important features, (v) how to include historical features to predict the clogging status of the sensor. We thoroughly assess PREPIPE performance and compare it with state-of-art deep learning architectures. Our results show that PREPIPE correctly identifies critical situations before the sensor reaches critical conditions. Furthermore, PREPIPE supports domain experts in optimizing the design of data-driven predictive maintenance pipelines with performance comparable to deep learning methodologies while keeping a degree of interpretability.

Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case / Giordano, Danilo; Giobergia, Flavio; Pastor, Eliana; La Macchia, Antonio; Cerquitelli, Tania; Baralis, Elena; Mellia, Marco; Tricarico, Davide. - In: COMPUTERS IN INDUSTRY. - ISSN 0166-3615. - ELETTRONICO. - 134:(2022), p. 103554. [10.1016/j.compind.2021.103554]

Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case

Giordano, Danilo;Giobergia, Flavio;Pastor, Eliana;La Macchia, Antonio;Cerquitelli, Tania;Baralis, Elena;Mellia, Marco;Tricarico, Davide
2022

Abstract

Predictive maintenance is an ever-growing topic of interest, spanning different fields and approaches. In the automotive domain, thanks to on-board sensors and the possibility to transmit collected data to the cloud, car manufacturers can deploy predictive maintenance solutions to prevent components malfunctioning and eventually recall to the service the vehicle before the customer experiences the failure. In this paper we present PREPIPE, a data-driven pipeline for predictive maintenance. Given the raw time series of signals recorded by the on-board engine control unit of diesel engines, we exploit PREPIPE to predict the clogging status of the oxygen sensor, a key component of the exhaust system to control combustion efficiency and pollutant emissions. In the design of PREPIPE we deeply investigate: (i) how to choose the best subset of signals to best capture the sensor status, (ii) how much data needs to be collected to make the most accurate prediction, (iii) how to transform the original time series into features suitable for state-of-art classifiers, (iv) how to select the most important features, (v) how to include historical features to predict the clogging status of the sensor. We thoroughly assess PREPIPE performance and compare it with state-of-art deep learning architectures. Our results show that PREPIPE correctly identifies critical situations before the sensor reaches critical conditions. Furthermore, PREPIPE supports domain experts in optimizing the design of data-driven predictive maintenance pipelines with performance comparable to deep learning methodologies while keeping a degree of interpretability.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0166361521001615-main.pdf

non disponibili

Descrizione: Versione Pubblicata
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Giordano_PREPIPE.pdf

embargo fino al 10/11/2023

Descrizione: Post Print Accettato
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 816.79 kB
Formato Adobe PDF
816.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2937019