Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano-hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differentiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic (d3D) 3D culture conditions at 7 and 21 days. The colonization rate of hMSCs and osteogenic differentiation were amplified by d3D when physical stimulation was provided by a perfusion bioreactor. Increase in dsDNA content (p < 0.0005), up-regulation of RUNX2, ALPL, SPP1 (p < 0.0005) and SOX9 (p < 0.005) gene expression, and more calcium nodule formation (p < 0.0005) were observed in d3D cultures in comparison to s3D ones over time. Dynamic 3D culture, mimicking the mechanical signals of bone environment, improved significantly osteogenic differentiation of hMSCs on PLLA/nHA scaffold, without the addition of growth factors, confirming this composite scaffold suitable for bone regeneration.
Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly L-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair / De Luca, A.; Vitrano, I.; Costa, V.; Raimondi, L.; Carina, V.; Bellavia, D.; Conoscenti, G.; Di Falco, R.; Pavia, F. C.; La Carrubba, V.; Brucato, V.; Giavaresi, G.. - In: JOURNAL OF BIOSCIENCE AND BIOENGINEERING. - ISSN 1389-1723. - ELETTRONICO. - 129:2(2020), pp. 250-257. [10.1016/j.jbiosc.2019.08.001]
Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly L-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair
Di Falco R.;Brucato V.;
2020
Abstract
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano-hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differentiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic (d3D) 3D culture conditions at 7 and 21 days. The colonization rate of hMSCs and osteogenic differentiation were amplified by d3D when physical stimulation was provided by a perfusion bioreactor. Increase in dsDNA content (p < 0.0005), up-regulation of RUNX2, ALPL, SPP1 (p < 0.0005) and SOX9 (p < 0.005) gene expression, and more calcium nodule formation (p < 0.0005) were observed in d3D cultures in comparison to s3D ones over time. Dynamic 3D culture, mimicking the mechanical signals of bone environment, improved significantly osteogenic differentiation of hMSCs on PLLA/nHA scaffold, without the addition of growth factors, confirming this composite scaffold suitable for bone regeneration.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1389172319301914-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2934752