Hydrated structures of a specific compound can often have different physiochemical properties compared to the anhydrous form. Therefore, being able to predict and understand these properties, especially the stability, is critical. In this study, quercetin, a flavonoid molecule, is modeled in three different states of hydration to gain an understanding of the effect of water molecules on the structure, packing, and conformation energetics of the three forms. Conformational analysis and modeling of intermolecular interactions (synthonic modeling) have been performed. It was found that in the anhydrous form hydrogen bonding is the strongest type of interaction, while in the two hydrate structures, the incorporation of water within the lattice leads to the formation of hydrogen bonds between the quercetin and water molecules. Within hydrates, quercetin molecules adopt a more planar conformation, which allows them to pack more closely by strong π-πstacking interactions, thus resulting in a higher relative stability. The modeling results highlight the importance of water in the stabilization of the lattice and explain the preferential nucleation of the dihydrate form. It is further demonstrated how synthonic modeling can be a predictive tool for the product's properties, leading to more efficient product design and faster development.

Synthonic Modeling of Quercetin and Its Hydrates: Explaining Crystallization Behavior in Terms of Molecular Conformation and Crystal Packing / Klitou, P.; Rosbottom, I.; Simone, E.. - In: CRYSTAL GROWTH & DESIGN. - ISSN 1528-7483. - 19:8(2019), pp. 4774-4783. [10.1021/acs.cgd.9b00650]

Synthonic Modeling of Quercetin and Its Hydrates: Explaining Crystallization Behavior in Terms of Molecular Conformation and Crystal Packing

Simone E.
2019

Abstract

Hydrated structures of a specific compound can often have different physiochemical properties compared to the anhydrous form. Therefore, being able to predict and understand these properties, especially the stability, is critical. In this study, quercetin, a flavonoid molecule, is modeled in three different states of hydration to gain an understanding of the effect of water molecules on the structure, packing, and conformation energetics of the three forms. Conformational analysis and modeling of intermolecular interactions (synthonic modeling) have been performed. It was found that in the anhydrous form hydrogen bonding is the strongest type of interaction, while in the two hydrate structures, the incorporation of water within the lattice leads to the formation of hydrogen bonds between the quercetin and water molecules. Within hydrates, quercetin molecules adopt a more planar conformation, which allows them to pack more closely by strong π-πstacking interactions, thus resulting in a higher relative stability. The modeling results highlight the importance of water in the stabilization of the lattice and explain the preferential nucleation of the dihydrate form. It is further demonstrated how synthonic modeling can be a predictive tool for the product's properties, leading to more efficient product design and faster development.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2934006