Boundary Element Methods (BEMs) are efficient strategies to numerically solve electromagnetic radiation and scattering problems. Unfortunately, however, classical BEM formulations suffer from ill-conditioning when the frequency is low, or the discretization density is high. In the past, several remedies have been presented for these ill-conditioning problems including preconditioners based on Calderón identities, hierarchical bases, and current decompositions. While effective, these strategies however require ad-hoc procedures including mesh-refinements, new basis function definitions, and adapted fast methods that, if not implemented properly, can become computationally cumbersome.

A Fast Quasi-Conformal Mapping Preconditioner for Electromagnetic Integral Equations / Consoli, D.; Merlini, A.; Andriulli, F. P.. - ELETTRONICO. - (2021), pp. 412-412. (Intervento presentato al convegno 22nd International Conference on Electromagnetics in Advanced Applications, ICEAA 2021 tenutosi a Honolulu, HI, USA nel 9-13 Aug. 2021) [10.1109/ICEAA52647.2021.9539728].

A Fast Quasi-Conformal Mapping Preconditioner for Electromagnetic Integral Equations

Consoli D.;Merlini A.;Andriulli F. P.
2021

Abstract

Boundary Element Methods (BEMs) are efficient strategies to numerically solve electromagnetic radiation and scattering problems. Unfortunately, however, classical BEM formulations suffer from ill-conditioning when the frequency is low, or the discretization density is high. In the past, several remedies have been presented for these ill-conditioning problems including preconditioners based on Calderón identities, hierarchical bases, and current decompositions. While effective, these strategies however require ad-hoc procedures including mesh-refinements, new basis function definitions, and adapted fast methods that, if not implemented properly, can become computationally cumbersome.
2021
978-1-6654-1386-2
File in questo prodotto:
File Dimensione Formato  
A_Fast_Quasi-Conformal_Mapping_Preconditioner_for_Electromagnetic_Integral_Equations.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Abstract
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ICEAA_2021_id990_Consoli_Merlini_Andriulli.pdf

accesso aperto

Descrizione: Post print versione autore
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 490.05 kB
Formato Adobe PDF
490.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2933792