In the automotive field, the requirements in terms of carbon emissions and improved efficiency are shifting the focus of designers towards reduced engine size. As a result, the dynamic balancing of an engine with strict limitations on the number of cylinders, the weight and the available space becomes a challenging task. The present contribution aims at providing the designer with a tool capable of selecting fundamental parameters needed to correctly balance an internal combustion engine, including the masses and geometry of the elements to be added directly onto the crankshaft and onto the balancing shafts. The relevant elements that distinguish the tool from others already proposed are two. The first is the comprehensive matrix formulation which makes the tool fit for a wide variety of engine configurations. The second is an optimisation procedure that selects not only the position of the mass and centre of gravity of the counterweight but also its complete geometric configuration, thus instantaneously identifying the overall dimensions and weight of the crankshaft.

A general framework for crankshaft balancing and counterweight design / Dagna, A.; Delprete, C.; Gastaldi, C.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:19(2021), p. 8997. [10.3390/app11198997]

A general framework for crankshaft balancing and counterweight design

Dagna A.;Delprete C.;Gastaldi C.
2021

Abstract

In the automotive field, the requirements in terms of carbon emissions and improved efficiency are shifting the focus of designers towards reduced engine size. As a result, the dynamic balancing of an engine with strict limitations on the number of cylinders, the weight and the available space becomes a challenging task. The present contribution aims at providing the designer with a tool capable of selecting fundamental parameters needed to correctly balance an internal combustion engine, including the masses and geometry of the elements to be added directly onto the crankshaft and onto the balancing shafts. The relevant elements that distinguish the tool from others already proposed are two. The first is the comprehensive matrix formulation which makes the tool fit for a wide variety of engine configurations. The second is an optimisation procedure that selects not only the position of the mass and centre of gravity of the counterweight but also its complete geometric configuration, thus instantaneously identifying the overall dimensions and weight of the crankshaft.
2021
File in questo prodotto:
File Dimensione Formato  
applsci-11-08997-v2 (1).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2930226