This study assessed the anaerobic digestion (AD) of wastes deriving from cosmetics production: sludge from onsite wastewater treatment plant (sWWTP), residues of shampoo/conditioner (RSC) and sludge from mascara production (MS), considered as single substrates and as mixture according to the produced amounts (54 %-wt sWWTP, 31 %-wt RSC, 13 %-wt MS, plus 2 %-wt food waste from the canteen, FW). Total COD (CODT) was 624–1436 g O2/kg VS, while soluble COD was 5–23 %-wt of CODT. AD tests at 35 °C achieved the following biogas yields: 0.10 Nm3/kgvs (70 %-v/v methane) for sWWTP; 0.07 Nm3/kgvs (62 %-v/v methane) for RSC; 0.04 Nm3/kgvs (67 %-v/v methane) for MS. The mixed substrates underwent physico-chemical pre-treatments (thermo-alkaline, TA: 120 min at 50 °C; thermo-alkaline-sonication, TAS: 15 min at 40 kHz and 80 °C, both based on the addition of 0.08 g NaOH per each g of total solid in the substrate), reaching 64–66% disintegration rate, and AD tests (5 %-wt dry substance) at 35 and 52 °C. Biogas yields were (for TA and TAS respectively): 0.22 and 0.20 Nm3/kgVS (62–70% methane); 0.21 and 0.19 Nm3/kgVS (66-66% methane) at 52 °C. At both temperatures, methane yields considerably improved (+71–100%), compared to mixed untreated substrates, and 5-8 %-wt total solids reductions were observed. A technical-economic scale-up assessment completed the research. The energy analysis highlighted the crucial role of TA pre-treatment in achieving the process energetic sustainability. The economic analysis showed that the AD of the considered cosmetic waste could be sustainable anyway, thanks to the savings related to the disposal of the digestate compared to current waste management costs.
Investigation of the anaerobic digestion of cosmetic industrial wastes: Feasibility and perspectives / Fiore, S.; Demichelis, F.; Chiappero, M.; Onofrio, M.. - In: JOURNAL OF ENVIRONMENTAL MANAGEMENT. - ISSN 0301-4797. - ELETTRONICO. - 299:(2021), p. 113678. [10.1016/j.jenvman.2021.113678]
Investigation of the anaerobic digestion of cosmetic industrial wastes: Feasibility and perspectives
Fiore S.;Demichelis F.;Chiappero M.;Onofrio M.
2021
Abstract
This study assessed the anaerobic digestion (AD) of wastes deriving from cosmetics production: sludge from onsite wastewater treatment plant (sWWTP), residues of shampoo/conditioner (RSC) and sludge from mascara production (MS), considered as single substrates and as mixture according to the produced amounts (54 %-wt sWWTP, 31 %-wt RSC, 13 %-wt MS, plus 2 %-wt food waste from the canteen, FW). Total COD (CODT) was 624–1436 g O2/kg VS, while soluble COD was 5–23 %-wt of CODT. AD tests at 35 °C achieved the following biogas yields: 0.10 Nm3/kgvs (70 %-v/v methane) for sWWTP; 0.07 Nm3/kgvs (62 %-v/v methane) for RSC; 0.04 Nm3/kgvs (67 %-v/v methane) for MS. The mixed substrates underwent physico-chemical pre-treatments (thermo-alkaline, TA: 120 min at 50 °C; thermo-alkaline-sonication, TAS: 15 min at 40 kHz and 80 °C, both based on the addition of 0.08 g NaOH per each g of total solid in the substrate), reaching 64–66% disintegration rate, and AD tests (5 %-wt dry substance) at 35 and 52 °C. Biogas yields were (for TA and TAS respectively): 0.22 and 0.20 Nm3/kgVS (62–70% methane); 0.21 and 0.19 Nm3/kgVS (66-66% methane) at 52 °C. At both temperatures, methane yields considerably improved (+71–100%), compared to mixed untreated substrates, and 5-8 %-wt total solids reductions were observed. A technical-economic scale-up assessment completed the research. The energy analysis highlighted the crucial role of TA pre-treatment in achieving the process energetic sustainability. The economic analysis showed that the AD of the considered cosmetic waste could be sustainable anyway, thanks to the savings related to the disposal of the digestate compared to current waste management costs.File | Dimensione | Formato | |
---|---|---|---|
Fiore et al_2021 L'Oréal.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
manuscript_revised clean.pdf
Open Access dal 08/09/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
878.54 kB
Formato
Adobe PDF
|
878.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2926032