The decrease in the oil discoveries fuels the development of innovative and more efficient extraction processes. It has been demonstrated that Enhanced Oil Recovery (EOR, or tertiary recovery technique) offers prospects for producing 30 to 60% of the oil originally trapped in the reservoir. Interestingly, oil extraction is significantly enhanced by the injection of low salinity water into oilfields, which is known as one of the EOR techniques. Surface Reverse Osmosis (SRO) plants have been adopted to provide the large and continuous amount of low salinity water for this EOR technique, especially in offshore sites. In this article, we outline an original solution for producing low salinity water for offshore EOR processes, and we demonstrate its energy convenience. In fact, the installation of reverse osmosis plants under the sea level (Deep-Sea Reverse Osmosis, DSRO) is found to have significant potential energy savings (up to 50%) with respect to traditional SRO ones. This convenience mainly arises from the non-ideality of reverse osmosis membranes and hydraulic machines, and it is especially evident – from both energy and technological point of view – when the permeate is kept pressurized at the outlet of the reverse osmosis elements. In perspective, DSRO may be a good alternative to improve the sustainability of low salinity EOR.

Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery / Fasano, M.; Morciano, M.; Bergamasco, L.; Chiavazzo, E.; Zampato, M.; Carminati, S.; Asinari, P.. - In: APPLIED ENERGY. - ISSN 0306-2619. - ELETTRONICO. - 304:(2021), p. 117661. [10.1016/j.apenergy.2021.117661]

Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery

Fasano M.;Morciano M.;Bergamasco L.;Chiavazzo E.;Asinari P.
2021

Abstract

The decrease in the oil discoveries fuels the development of innovative and more efficient extraction processes. It has been demonstrated that Enhanced Oil Recovery (EOR, or tertiary recovery technique) offers prospects for producing 30 to 60% of the oil originally trapped in the reservoir. Interestingly, oil extraction is significantly enhanced by the injection of low salinity water into oilfields, which is known as one of the EOR techniques. Surface Reverse Osmosis (SRO) plants have been adopted to provide the large and continuous amount of low salinity water for this EOR technique, especially in offshore sites. In this article, we outline an original solution for producing low salinity water for offshore EOR processes, and we demonstrate its energy convenience. In fact, the installation of reverse osmosis plants under the sea level (Deep-Sea Reverse Osmosis, DSRO) is found to have significant potential energy savings (up to 50%) with respect to traditional SRO ones. This convenience mainly arises from the non-ideality of reverse osmosis membranes and hydraulic machines, and it is especially evident – from both energy and technological point of view – when the permeate is kept pressurized at the outlet of the reverse osmosis elements. In perspective, DSRO may be a good alternative to improve the sustainability of low salinity EOR.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0306261921010242-main.pdf

accesso riservato

Descrizione: Manuscript editorial version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
main.pdf

Open Access dal 03/09/2023

Descrizione: Manuscript post-print
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2925594