In this study, the external magnetic field emitted by a wireless power transfer (WPT) system and the internal electric field induced in human body models during recharging operations of a compact electric vehicle (EV) are evaluated. The magneticfield is calculated with a hybrid scheme coupling the boundary element method with the surface impedance boundary conditions in order to fit the multiscale open-boundary characteristics of the problem. A commercial software is then used to perform numerical dosimetry. Specifically, two realistic anatomical models, both in a driving position and in a standing posture, are considered, and the chassis of the EV is modeled either as a currently employed aluminum alloy and as a futuristic carbon fiber composite panel. Aligned and misaligned coil configurations of the WPT system are considered as well. The analysis of the obtained results shows that the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels are exceeded in the driving position, especially for the carbon fiber chassis, whereas the system is compliant with the basic restrictions, at least for the considered scenarios.
Chassis influence on the exposure assessment of a compact ev during wpt recharging operations / De Santis, V.; Giaccone, L.; Freschi, F.. - In: MAGNETOCHEMISTRY. - ISSN 2312-7481. - 7:2(2021), pp. 1-11. [10.3390/magnetochemistry7020025]
Chassis influence on the exposure assessment of a compact ev during wpt recharging operations
Giaccone L.;Freschi F.
2021
Abstract
In this study, the external magnetic field emitted by a wireless power transfer (WPT) system and the internal electric field induced in human body models during recharging operations of a compact electric vehicle (EV) are evaluated. The magneticfield is calculated with a hybrid scheme coupling the boundary element method with the surface impedance boundary conditions in order to fit the multiscale open-boundary characteristics of the problem. A commercial software is then used to perform numerical dosimetry. Specifically, two realistic anatomical models, both in a driving position and in a standing posture, are considered, and the chassis of the EV is modeled either as a currently employed aluminum alloy and as a futuristic carbon fiber composite panel. Aligned and misaligned coil configurations of the WPT system are considered as well. The analysis of the obtained results shows that the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels are exceeded in the driving position, especially for the carbon fiber chassis, whereas the system is compliant with the basic restrictions, at least for the considered scenarios.File | Dimensione | Formato | |
---|---|---|---|
magnetochemistry-07-00025-v2.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2925133