The specific demands of supply chains built upon large and complex IoT systems, make it a must to design a coordinated framework for cyber resilience provisioning, intended to guarantee trusted supply chains of ICT systems, built upon distributed, dynamic, potentially insecure, and heterogeneous ICT infrastructures. As such, the solution proposed in this paper is envisioned to deal with the whole supply chain system components, from the IoT ecosystem to the infrastructure connecting them, addressing security and privacy functionalities related to risks and vulnerabilities management, accountability, and mitigation strategies, as well as security metrics and evidence-based security assurance. In this paper, we present FISHY as a preliminary architecture that is designed to orchestrate existing and beyond state-of-the-art security appliances in composed ICT scenarios. To this end, the FISHY architecture leverages the capabilities of programmable networks and IT infrastructure through seamless orchestration and instantiation of novel security services, both in real-time and proactively. The paper also includes a thorough business analysis to go far beyond the technical benefits of a potential FISHY adoption, as well as three real-world use cases highlighting the envisioned benefits of a potential FISHY adoption.
Cybersecurity in ICT supply chains: key challenges and a relevant architecture / Masip-Bruin, X.; Marin-Tordera, E.; Ruiz, J.; Jukan, A.; Trakadas, P.; Cernivec, A.; Lioy, A.; Lopez, D.; Santos, H.; Gonos, A.; Silva, A.; Soriano, J.; Kalogiannis, G.. - In: SENSORS. - ISSN 1424-8220. - STAMPA. - 21:18(2021). [10.3390/s21186057]
Cybersecurity in ICT supply chains: key challenges and a relevant architecture
Lioy A.;
2021
Abstract
The specific demands of supply chains built upon large and complex IoT systems, make it a must to design a coordinated framework for cyber resilience provisioning, intended to guarantee trusted supply chains of ICT systems, built upon distributed, dynamic, potentially insecure, and heterogeneous ICT infrastructures. As such, the solution proposed in this paper is envisioned to deal with the whole supply chain system components, from the IoT ecosystem to the infrastructure connecting them, addressing security and privacy functionalities related to risks and vulnerabilities management, accountability, and mitigation strategies, as well as security metrics and evidence-based security assurance. In this paper, we present FISHY as a preliminary architecture that is designed to orchestrate existing and beyond state-of-the-art security appliances in composed ICT scenarios. To this end, the FISHY architecture leverages the capabilities of programmable networks and IT infrastructure through seamless orchestration and instantiation of novel security services, both in real-time and proactively. The paper also includes a thorough business analysis to go far beyond the technical benefits of a potential FISHY adoption, as well as three real-world use cases highlighting the envisioned benefits of a potential FISHY adoption.File | Dimensione | Formato | |
---|---|---|---|
sensors-21-06057-v3.pdf
accesso aperto
Descrizione: Full paper
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2923612