It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.

3D Cell Culture: Recent Development in Materials with Tunable Stiffness / Baruffaldi, D.; Palmara, G.; Pirri, C.; Frascella, F.. - In: ACS APPLIED BIO MATERIALS. - ISSN 2576-6422. - ELETTRONICO. - 4:3(2021), pp. 2233-2250. [10.1021/acsabm.0c01472]

3D Cell Culture: Recent Development in Materials with Tunable Stiffness

Baruffaldi D.;Palmara G.;Pirri C.;Frascella F.
2021

Abstract

It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.
File in questo prodotto:
File Dimensione Formato  
acsabm.0c01472.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2922716