Background: In current precision prostate cancer (PCa) surgery era the identification of the best patients candidate for prostate biopsy still remains an open issue. The aim of this study was to evaluate if the prostate target biopsy (TB) outcomes could be predicted by using artificial intelligence approach based on a set of clinical pre-biopsy. Methods: Pre-biopsy characteristics in terms of PSA, PSA density, digital rectal examination (DRE), previous prostate biopsies, number of suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score were extracted from our prospectively maintained TB database from March 2014 to December 2019. Our approach is based on Fuzzy logic and associative rules mining, with the aim to predict TB outcomes. Results: A total of 1448 patients were included. Using the Frequent-Pattern growth algorithm we extracted 875 rules and used to build the fuzzy classifier. 963 subjects were classified whereas for the remaining 484 subjects were not classified since no rules matched with their input variables. Analyzing the classified subjects we obtained a specificity of 59.2% and sensitivity of 90.8% with a negative and the positive predictive values of 81.3% and 76.6%, respectively. In particular, focusing on ISUP ≥ 3 PCa, our model is able to correctly predict the biopsy outcomes in 98.1% of the cases. Conclusions: In this study we demonstrated that the possibility to look at several pre-biopsy variables simultaneously with artificial intelligence algorithms can improve the prediction of TB outcomes, outclassing the performance of PSA, its derivates and MRI alone.

Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic / Checcucci, Enrico; Rosati, Samanta; De Cillis, Sabrina; Vagni, Marica; Giordano, Noemi; Piana, Alberto; Granato, Stefano; Amparore, Daniele; De Luca, Stefano; Fiori, Cristian; Balestra, Gabriella; Porpiglia, Francesco. - In: PROSTATE CANCER AND PROSTATIC DISEASES. - ISSN 1365-7852. - ELETTRONICO. - 25:(2022), pp. 359-362. [10.1038/s41391-021-00441-1]

Artificial intelligence for target prostate biopsy outcomes prediction the potential application of fuzzy logic

Rosati, Samanta;Giordano, Noemi;Balestra, Gabriella;Porpiglia, Francesco
2022

Abstract

Background: In current precision prostate cancer (PCa) surgery era the identification of the best patients candidate for prostate biopsy still remains an open issue. The aim of this study was to evaluate if the prostate target biopsy (TB) outcomes could be predicted by using artificial intelligence approach based on a set of clinical pre-biopsy. Methods: Pre-biopsy characteristics in terms of PSA, PSA density, digital rectal examination (DRE), previous prostate biopsies, number of suspicious lesions at mp-MRI, lesion volume, lesion location, and Pi-Rads score were extracted from our prospectively maintained TB database from March 2014 to December 2019. Our approach is based on Fuzzy logic and associative rules mining, with the aim to predict TB outcomes. Results: A total of 1448 patients were included. Using the Frequent-Pattern growth algorithm we extracted 875 rules and used to build the fuzzy classifier. 963 subjects were classified whereas for the remaining 484 subjects were not classified since no rules matched with their input variables. Analyzing the classified subjects we obtained a specificity of 59.2% and sensitivity of 90.8% with a negative and the positive predictive values of 81.3% and 76.6%, respectively. In particular, focusing on ISUP ≥ 3 PCa, our model is able to correctly predict the biopsy outcomes in 98.1% of the cases. Conclusions: In this study we demonstrated that the possibility to look at several pre-biopsy variables simultaneously with artificial intelligence algorithms can improve the prediction of TB outcomes, outclassing the performance of PSA, its derivates and MRI alone.
File in questo prodotto:
File Dimensione Formato  
Manuscript Prost Canc_Rev-EC_SR_NON highlighted ACCEPTED.pdf

Open Access dal 04/03/2022

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 231.08 kB
Formato Adobe PDF
231.08 kB Adobe PDF Visualizza/Apri
s41391-021-00441-1.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 706.74 kB
Formato Adobe PDF
706.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2921458