The recent and continuous improvement in the transportation field provides several different opportunities for enhancing safety and comfort in passenger vehicles. In this context, Adaptive Cruise Control (ACC) might provide additional benefits, including smoothness of the traffic flow and collision avoidance. In addition, Vehicle-to-Vehicle (V2V) communication may be exploited in the car-following model to obtain further improvements in safety and comfort by guaranteeing fast response to critical events. In this paper, firstly an Adaptive Model Predictive Control was developed for managing the Cooperative ACC scenario of two vehicles; as a second step, the safety analysis during a cut-in maneuver was performed, extending the platooning vehicles’ number to four. The effectiveness of the proposed methodology was assessed for in different driving scenarios such as diverse cruising speeds, steep accelerations, and aggressive decelerations. Moreover, the controller was validated by considering various speed profiles of the leader vehicle, including a real drive cycle obtained using a random drive cycle generator software. Results demonstrated that the proposed control strategy was capable of ensuring safety in virtually all test cases and quickly responding to unexpected cut-in maneuvers. Indeed, different scenarios have been tested, including acceleration and deceleration phases at high speeds where the control strategy successfully avoided any collision and stabilized the vehicle platoon approximately 20–30 s after the sudden cut-in. Concerning the comfort, it was demonstrated that improvements were possible in the aggressive drive cycle whereas different scenarios were found in the random cycle, depending on where the cut-in maneuver occurred.

Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles / Capuano, Antonio; Spano, Matteo; Musa, Alessia; Toscano, Gianluca; Misul, DANIELA ANNA. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 14:17(2021), p. 5291. [10.3390/en14175291]

Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles

Matteo Spano;Alessia Musa;Daniela Misul
2021

Abstract

The recent and continuous improvement in the transportation field provides several different opportunities for enhancing safety and comfort in passenger vehicles. In this context, Adaptive Cruise Control (ACC) might provide additional benefits, including smoothness of the traffic flow and collision avoidance. In addition, Vehicle-to-Vehicle (V2V) communication may be exploited in the car-following model to obtain further improvements in safety and comfort by guaranteeing fast response to critical events. In this paper, firstly an Adaptive Model Predictive Control was developed for managing the Cooperative ACC scenario of two vehicles; as a second step, the safety analysis during a cut-in maneuver was performed, extending the platooning vehicles’ number to four. The effectiveness of the proposed methodology was assessed for in different driving scenarios such as diverse cruising speeds, steep accelerations, and aggressive decelerations. Moreover, the controller was validated by considering various speed profiles of the leader vehicle, including a real drive cycle obtained using a random drive cycle generator software. Results demonstrated that the proposed control strategy was capable of ensuring safety in virtually all test cases and quickly responding to unexpected cut-in maneuvers. Indeed, different scenarios have been tested, including acceleration and deceleration phases at high speeds where the control strategy successfully avoided any collision and stabilized the vehicle platoon approximately 20–30 s after the sudden cut-in. Concerning the comfort, it was demonstrated that improvements were possible in the aggressive drive cycle whereas different scenarios were found in the random cycle, depending on where the cut-in maneuver occurred.
File in questo prodotto:
File Dimensione Formato  
energies-14-05291-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2920366