Background: The perception of taste is a prime example of complex signal transduction at the subcellular level, involving an intricate network of molecular machinery, which can be investigated to great extent by the tools provided by Computational Molecular Modelling. The present review summarises the current knowledge on the molecular mechanisms at the root of taste transduction, in particular involving taste receptors, highly specialised proteins driving the activation/deactivation of specific cell signalling pathways and ultimately leading to the perception of the five principal tastes: sweet, umami, bitter, salty and sour. The former three are detected by similar G protein-coupled receptors, while the latter two are transduced by ion channels. Scope and approach: The main objective of the present review is to provide a general overview of the molecular structures investigated to date of all taste receptors and the techniques employed for their molecular modelling. In addition, we provide an analysis of the various ligands known to date for the above-listed receptors, including how they are activated in the presence of their target molecule. Key findings and conclusions: In the last years, numerous advances have been made in molecular research and computational investigation of ligand-receptor interaction related to taste receptors. This work aims to outline the progress in scientific knowledge about taste perception and understand the molecular mechanisms involved in the transfer of taste information.

On the human taste perception: Molecular-level understanding empowered by computational methods / Pallante, L.; Malavolta, M.; Grasso, G.; Korfiati, A.; Mavroudi, S.; Mavkov, B.; Kalogeras, A.; Alexakos, C.; Martos, V.; Amoroso, D.; di Benedetto, G.; Piga, D.; Theofilatos, K.; Deriu, M. A.. - In: TRENDS IN FOOD SCIENCE & TECHNOLOGY. - ISSN 0924-2244. - 116:(2021), pp. 445-459. [10.1016/j.tifs.2021.07.013]

On the human taste perception: Molecular-level understanding empowered by computational methods

Pallante L.;Malavolta M.;Deriu M. A.
2021

Abstract

Background: The perception of taste is a prime example of complex signal transduction at the subcellular level, involving an intricate network of molecular machinery, which can be investigated to great extent by the tools provided by Computational Molecular Modelling. The present review summarises the current knowledge on the molecular mechanisms at the root of taste transduction, in particular involving taste receptors, highly specialised proteins driving the activation/deactivation of specific cell signalling pathways and ultimately leading to the perception of the five principal tastes: sweet, umami, bitter, salty and sour. The former three are detected by similar G protein-coupled receptors, while the latter two are transduced by ion channels. Scope and approach: The main objective of the present review is to provide a general overview of the molecular structures investigated to date of all taste receptors and the techniques employed for their molecular modelling. In addition, we provide an analysis of the various ligands known to date for the above-listed receptors, including how they are activated in the presence of their target molecule. Key findings and conclusions: In the last years, numerous advances have been made in molecular research and computational investigation of ligand-receptor interaction related to taste receptors. This work aims to outline the progress in scientific knowledge about taste perception and understand the molecular mechanisms involved in the transfer of taste information.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0924224421004519-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.95 MB
Formato Adobe PDF
4.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2919472