We study the derivation of macroscopic traffic models from car-following vehicle dynamics by means of hydrodynamic limits of an Enskog-type kinetic description. We consider the superposition of Follow-the-Leader (FTL) interactions and relaxation towards a traffic-dependent Optimal Velocity (OV) and we show that the resulting macroscopic models depend on the relative frequency between these two microscopic processes. If FTL interactions dominate then one gets an inhomogeneous Aw-Rascle-Zhang model, whose (pseudo) pressure and stability of the uniform flow are precisely defined by some features of the microscopic FTL and OV dynamics. Conversely, if the rate of OV relaxation is comparable to that of FTL interactions then one gets a Lighthill-Whitham-Richards model ruled only by the OV function. We further confirm these findings by means of numerical simulations of the particle system and the macroscopic models. Unlike other formally analogous results, our approach builds the macroscopic models as physical limits of particle dynamics rather than assessing the convergence of microscopic to macroscopic solutions under suitable numerical discretisations.
A statistical mechanics approach to macroscopic limits of car-following traffic dynamics / Chiarello, FELISIA ANGELA; Piccoli, Benedetto; Tosin, Andrea. - In: INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS. - ISSN 0020-7462. - ELETTRONICO. - 137:(2021), p. 103806. [10.1016/j.ijnonlinmec.2021.103806]
A statistical mechanics approach to macroscopic limits of car-following traffic dynamics
Felisia Angela Chiarello;Andrea Tosin
2021
Abstract
We study the derivation of macroscopic traffic models from car-following vehicle dynamics by means of hydrodynamic limits of an Enskog-type kinetic description. We consider the superposition of Follow-the-Leader (FTL) interactions and relaxation towards a traffic-dependent Optimal Velocity (OV) and we show that the resulting macroscopic models depend on the relative frequency between these two microscopic processes. If FTL interactions dominate then one gets an inhomogeneous Aw-Rascle-Zhang model, whose (pseudo) pressure and stability of the uniform flow are precisely defined by some features of the microscopic FTL and OV dynamics. Conversely, if the rate of OV relaxation is comparable to that of FTL interactions then one gets a Lighthill-Whitham-Richards model ruled only by the OV function. We further confirm these findings by means of numerical simulations of the particle system and the macroscopic models. Unlike other formally analogous results, our approach builds the macroscopic models as physical limits of particle dynamics rather than assessing the convergence of microscopic to macroscopic solutions under suitable numerical discretisations.File | Dimensione | Formato | |
---|---|---|---|
CfPbTa-FTL+OV.pdf
Open Access dal 21/08/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
chiarello2021IJNM.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2918354