Aim of the present study is to analyze thermal events occurring during cryoablation. Different bovine liver samples underwent freezing cycles at different cooling rate (from 0.0075 to 25 K/min). Ice onset temperature and specific latent heat capacity of the ice formation process were measured according to differential scanning calorimetry signals. A computational model of the thermal events occurring during cryoablation was compiled using Neumann’s analytical solution. Latent heat (#1 = 139.8 ± 7.4 J/g, #2 = 147.8 ± 7.9 J/g, #3 = 159.0 ± 4.1 J/g) of all liver samples was independent of the ice onset temperature, but linearly dependent on the water content. Ice onset temperature was proportional to the logarithm of the cooling rate in the range 5 ÷ 25 K/min (#3a = − 12.2 °C, #3b = − 16.2 °C, #3c = − 6.6 °C at 5K/min; #3a = − 16.5 °C, #3b = − 19.3 °C, #3c = − 11.6 °C at 25 K/min). Ice onset temperature was associated with both the way in which the heat involved into the phase transition was delivered and with the thermal gradient inside the tissue. Ice onset temperature should be evaluated in the early phase of the ablation to tailor cryoenergy delivery. In order to obtain low ice trigger temperatures and consequent low ablation temperatures a high cooling rate is necessary.
Calorimetric analysis of ice onset temperature during cryoablation: a model approach to identify early predictors of effective applications / Campagnoli, E.; Ballatore, A.; Giaretto, V.; Anselmino, M.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 11:1(2021), pp. 15798-15798. [10.1038/s41598-021-95204-2]
Calorimetric analysis of ice onset temperature during cryoablation: a model approach to identify early predictors of effective applications
Campagnoli E.;Giaretto V.;
2021
Abstract
Aim of the present study is to analyze thermal events occurring during cryoablation. Different bovine liver samples underwent freezing cycles at different cooling rate (from 0.0075 to 25 K/min). Ice onset temperature and specific latent heat capacity of the ice formation process were measured according to differential scanning calorimetry signals. A computational model of the thermal events occurring during cryoablation was compiled using Neumann’s analytical solution. Latent heat (#1 = 139.8 ± 7.4 J/g, #2 = 147.8 ± 7.9 J/g, #3 = 159.0 ± 4.1 J/g) of all liver samples was independent of the ice onset temperature, but linearly dependent on the water content. Ice onset temperature was proportional to the logarithm of the cooling rate in the range 5 ÷ 25 K/min (#3a = − 12.2 °C, #3b = − 16.2 °C, #3c = − 6.6 °C at 5K/min; #3a = − 16.5 °C, #3b = − 19.3 °C, #3c = − 11.6 °C at 25 K/min). Ice onset temperature was associated with both the way in which the heat involved into the phase transition was delivered and with the thermal gradient inside the tissue. Ice onset temperature should be evaluated in the early phase of the ablation to tailor cryoenergy delivery. In order to obtain low ice trigger temperatures and consequent low ablation temperatures a high cooling rate is necessary.File | Dimensione | Formato | |
---|---|---|---|
s41598-021-95204-2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2918134