The paper deals with a nonlinear evolution equation describing the dynamics of a nonhomogeneous multiply hinged beam, subject to a nonlocal restoring force of displacement type. First, a spectral analysis for the associated weighted stationary problem is performed, providing a complete system of eigenfunctions. Then, a linear stability analysis for bimodal solutions of the evolution problem is carried out, with the final goal of suggesting optimal choices of the density and of the position of the internal hinged points in order to improve the stability of the beam. The analysis exploits both analytical and numerical methods; the main conclusion of the investigation is that nonhomogeneous density functions improve the stability of the structure.

On the stability of a nonlinear nonhomogeneous multiply hinged beam / Berchio, E.; Falocchi, A.; Garrione, M.. - In: SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS. - ISSN 1536-0040. - STAMPA. - 20:2(2021), pp. 908-940. [10.1137/20M1374109]

On the stability of a nonlinear nonhomogeneous multiply hinged beam

Berchio E.;Falocchi A.;
2021

Abstract

The paper deals with a nonlinear evolution equation describing the dynamics of a nonhomogeneous multiply hinged beam, subject to a nonlocal restoring force of displacement type. First, a spectral analysis for the associated weighted stationary problem is performed, providing a complete system of eigenfunctions. Then, a linear stability analysis for bimodal solutions of the evolution problem is carried out, with the final goal of suggesting optimal choices of the density and of the position of the internal hinged points in order to improve the stability of the beam. The analysis exploits both analytical and numerical methods; the main conclusion of the investigation is that nonhomogeneous density functions improve the stability of the structure.
File in questo prodotto:
File Dimensione Formato  
Multispan.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 24.06 MB
Formato Adobe PDF
24.06 MB Adobe PDF Visualizza/Apri
2021_multispan.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 24.16 MB
Formato Adobe PDF
24.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2916397