Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 °C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.
New Insights in the Production of Simulated Moon Agglutinates: The Use of Natural Zeolite-Bearing Rocks / Manzoli, M.; Tammaro, O.; Marocco, A.; Bonelli, B.; Barrera, G.; Tiberto, P.; Allia, P.; Mateo-Velez, J. -C.; Roggero, A.; Dantras, E.; Arletti, R.; Pansini, M.; Esposito, S.. - In: ACS EARTH AND SPACE CHEMISTRY. - ISSN 2472-3452. - ELETTRONICO. - 5:6(2021), pp. 1631-1646. [10.1021/acsearthspacechem.1c00118]
New Insights in the Production of Simulated Moon Agglutinates: The Use of Natural Zeolite-Bearing Rocks
Tammaro O.;Bonelli B.;Barrera G.;Allia P.;Pansini M.;Esposito S.
2021
Abstract
Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 °C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.File | Dimensione | Formato | |
---|---|---|---|
sp-2021-00118t.R1_Proof_hi.pdf
Open Access dal 08/06/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri |
acsearthspacechem.1c00118.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.85 MB
Formato
Adobe PDF
|
3.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2913959