Bioactive glasses are the materials of choice in the field of bone regeneration. Antioxidant properties of interest to limit inflammation and foreign body reactions have been conferred to bioactive glasses by the addition of appropriate ions (such as Ce or Sr). On the other hand, the antioxidant activity of bioactive glasses without specific ion/molecular doping has been occasionally cited in the literature but never investigated in depth. In the present study, three silica-based bioactive glasses have been developed and characterized for their surface properties (wettability, zeta potential, chemical composition, and reactivity) and radical scavenging activity in the presence/absence of cells. For the first time, the antioxidant activity of simple silica-based (SiO2-CaO-Na2O) bioactive glasses has been demonstrated.

Antioxidant Activity of Silica-Based Bioactive Glasses / Ferraris, Sara; Corazzari, Ingrid; Turci, Francesco; Cochis, Andrea; Rimondini, Lia; Verne', Enrica. - In: ACS BIOMATERIALS SCIENCE & ENGINEERING. - ISSN 2373-9878. - ELETTRONICO. - 7:(2021), pp. 2309-2316. [10.1021/acsbiomaterials.1c00048]

Antioxidant Activity of Silica-Based Bioactive Glasses

Sara Ferraris;Francesco Turci;Enrica Vernè
2021

Abstract

Bioactive glasses are the materials of choice in the field of bone regeneration. Antioxidant properties of interest to limit inflammation and foreign body reactions have been conferred to bioactive glasses by the addition of appropriate ions (such as Ce or Sr). On the other hand, the antioxidant activity of bioactive glasses without specific ion/molecular doping has been occasionally cited in the literature but never investigated in depth. In the present study, three silica-based bioactive glasses have been developed and characterized for their surface properties (wettability, zeta potential, chemical composition, and reactivity) and radical scavenging activity in the presence/absence of cells. For the first time, the antioxidant activity of simple silica-based (SiO2-CaO-Na2O) bioactive glasses has been demonstrated.
File in questo prodotto:
File Dimensione Formato  
acsbiomaterials.1c00048.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2911533