The paper presents DECAI - DEcay Classification using Artificial Intelligence, a novel study using machine learning algorithms to identify materials, degradations or surface gaps of an architectural artefact in a semi-automatic way. A customised software has been developed to allow the operator to choose which categories of materials to classify, and selecting sample data from an orthophoto of the artefact to train the machine learning algorithms. Thanks to Visual Programming Language algorithms, the classification results are directly imported into the H-BIM environment and used to enrich the H-BIM model of the artefact. To date, the developed tool is dedicated to research use only; future developments will improve the graphical interface to make this tool accessible to a wider public.

DEcay Classification using Artificial Intelligence / Giovannini, Elisabetta Caterina; Tomalini, Andrea; Pristeri, Edoardo; Bergamasco, Letizia; Lo Turco, Massimiliano. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 2194-9034. - ELETTRONICO. - XLIII-B2-2021:(2021), pp. 847-854. [10.5194/isprs-archives-XLIII-B2-2021-847-2021]

DEcay Classification using Artificial Intelligence

Giovannini, Elisabetta Caterina;Tomalini, Andrea;Bergamasco, Letizia;Lo Turco, Massimiliano
2021

Abstract

The paper presents DECAI - DEcay Classification using Artificial Intelligence, a novel study using machine learning algorithms to identify materials, degradations or surface gaps of an architectural artefact in a semi-automatic way. A customised software has been developed to allow the operator to choose which categories of materials to classify, and selecting sample data from an orthophoto of the artefact to train the machine learning algorithms. Thanks to Visual Programming Language algorithms, the classification results are directly imported into the H-BIM environment and used to enrich the H-BIM model of the artefact. To date, the developed tool is dedicated to research use only; future developments will improve the graphical interface to make this tool accessible to a wider public.
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLIII-B2-2021-847-2021.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2910572