In social media, users are spreading misinformation easily and without fact checking. In principle, they do not have a malicious intent, but their sharing leads to a socially dangerous diffusion mechanism. The motivations behind this behavior have been linked to a wide variety of social and personal outcomes, but these users are not easily identified. The existing solutions show how the analysis of linguistic signals in social media posts combined with the exploration of network topologies are effective in this field. These applications have some limitations such as focusing solely on the fake news shared and not understanding the typology of the user spreading them. In this paper, we propose a computational approach to extract features from the social media posts of these users to recognize who is a fake news spreader for a given topic. Thanks to the CoAID dataset, we start the analysis with 300 K users engaged on an online micro-blogging platform; then, we enriched the dataset by extending it to a collection of more than 1 M share actions and their associated posts on the platform. The proposed approach processes a batch of Twitter posts authored by users of the CoAID dataset and turns them into a high-dimensional matrix of features, which are then exploited by a deep neural network architecture based on transformers to perform user classification. We prove the effectiveness of our work by comparing the precision, recall, and f1 score of our model with different configurations and with a baseline classifier. We obtained an f1 score of 0.8076, obtaining an improvement from the state-of-the-art by 4%.

Automated Classification of Fake News Spreaders to Break the Misinformation Chain / Leonardi, Simone; Rizzo, Giuseppe; Morisio, Maurizio. - In: INFORMATION. - ISSN 2078-2489. - ELETTRONICO. - 12:6(2021), pp. 1-18. [10.3390/info11040179]

Automated Classification of Fake News Spreaders to Break the Misinformation Chain

Leonardi,Simone;Rizzo,Giuseppe;Morisio,Maurizio
2021

Abstract

In social media, users are spreading misinformation easily and without fact checking. In principle, they do not have a malicious intent, but their sharing leads to a socially dangerous diffusion mechanism. The motivations behind this behavior have been linked to a wide variety of social and personal outcomes, but these users are not easily identified. The existing solutions show how the analysis of linguistic signals in social media posts combined with the exploration of network topologies are effective in this field. These applications have some limitations such as focusing solely on the fake news shared and not understanding the typology of the user spreading them. In this paper, we propose a computational approach to extract features from the social media posts of these users to recognize who is a fake news spreader for a given topic. Thanks to the CoAID dataset, we start the analysis with 300 K users engaged on an online micro-blogging platform; then, we enriched the dataset by extending it to a collection of more than 1 M share actions and their associated posts on the platform. The proposed approach processes a batch of Twitter posts authored by users of the CoAID dataset and turns them into a high-dimensional matrix of features, which are then exploited by a deep neural network architecture based on transformers to perform user classification. We prove the effectiveness of our work by comparing the precision, recall, and f1 score of our model with different configurations and with a baseline classifier. We obtained an f1 score of 0.8076, obtaining an improvement from the state-of-the-art by 4%.
File in questo prodotto:
File Dimensione Formato  
information-12-00248.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 578.38 kB
Formato Adobe PDF
578.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2906732