A method for the simulation of aggregation and breakup processes in colloidal particle suspensions is presented. The method combines a Monte Carlo algorithm to determine, on the basis of probabilistic considerations, the sequence of aggregation and breakup events, and a Discrete Element Method, built in the framework of Stokesian dynamics and contact mechanics, to accurately reproduce them. Liquid-solid suspensions subject to a uniform shear stress are investigated. The model is seen to be able to reproduce the typical dynamic steady state which is observed in colloidal suspensions under severe shearing, in which the effects of aggregation and breakup balance each other. The structural properties of the aggregates and the dynamics of the aggregation and breakup phenomena are characterized in detail. Both fragmentation and erosion are seen to contribute to the breakup process, which is characterized by an exponent similar to the one reported in the literature for compact clusters.

Aggregation and breakup of colloidal particle aggregates in shear flow: A combined Monte Carlo - Stokesian dynamics approach / Frungieri, G.; Vanni, M.. - In: POWDER TECHNOLOGY. - ISSN 0032-5910. - ELETTRONICO. - 388:(2021), pp. 357-370. [10.1016/j.powtec.2021.04.076]

Aggregation and breakup of colloidal particle aggregates in shear flow: A combined Monte Carlo - Stokesian dynamics approach

Frungieri G.;Vanni M.
2021

Abstract

A method for the simulation of aggregation and breakup processes in colloidal particle suspensions is presented. The method combines a Monte Carlo algorithm to determine, on the basis of probabilistic considerations, the sequence of aggregation and breakup events, and a Discrete Element Method, built in the framework of Stokesian dynamics and contact mechanics, to accurately reproduce them. Liquid-solid suspensions subject to a uniform shear stress are investigated. The model is seen to be able to reproduce the typical dynamic steady state which is observed in colloidal suspensions under severe shearing, in which the effects of aggregation and breakup balance each other. The structural properties of the aggregates and the dynamics of the aggregation and breakup phenomena are characterized in detail. Both fragmentation and erosion are seen to contribute to the breakup process, which is characterized by an exponent similar to the one reported in the literature for compact clusters.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0032591021003636-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Manuscript_Frungieri_REV_POWTEC.pdf

Open Access dal 01/05/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2904112