Let G be the semidirect product of N and A, where N is a stratified group and A = R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G and their sum is a sub-Laplacian Delta on G. Here we prove weak type (1, 1), L-p-boundedness for p is an element of (1, 2] and H-1 -> L-1 boundedness of the Riesz transforms Y Delta^{-1/2} and Y Delta^{-1} Z, where Y and Z are any horizontal left-invariant vector fields on G, as well as the corresponding dual boundedness results. At the crux of the argument are large-time bounds for spatial derivatives of the heat kernel, which are new when Delta is not elliptic.

Riesz transforms on solvable extensions of stratified groups / Martini, A; Vallarino, M. - In: STUDIA MATHEMATICA. - ISSN 0039-3223. - STAMPA. - 259:2(2021), pp. 175-200. [10.4064/sm190927-4-1]

Riesz transforms on solvable extensions of stratified groups

Martini, A;Vallarino, M
2021

Abstract

Let G be the semidirect product of N and A, where N is a stratified group and A = R acts on N via automorphic dilations. Homogeneous sub-Laplacians on N and A can be lifted to left-invariant operators on G and their sum is a sub-Laplacian Delta on G. Here we prove weak type (1, 1), L-p-boundedness for p is an element of (1, 2] and H-1 -> L-1 boundedness of the Riesz transforms Y Delta^{-1/2} and Y Delta^{-1} Z, where Y and Z are any horizontal left-invariant vector fields on G, as well as the corresponding dual boundedness results. At the crux of the argument are large-time bounds for spatial derivatives of the heat kernel, which are new when Delta is not elliptic.
2021
File in questo prodotto:
File Dimensione Formato  
martini-vallarino-Studia2021.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 473.5 kB
Formato Adobe PDF
473.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1804.04510.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 295.42 kB
Formato Adobe PDF
295.42 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2903472