Optical communication systems, operating in C-band, are reaching their theoretically achievable capacity limits. An attractive and economically viable solution to satisfy the future data rate demands is to employ the transmission across the full low-loss spectrum encompassing O, E, S, C, and L band of the single mode fibers (SMF). Utilizing all five bands offers a bandwidth of up to sim53.5 THz (365 nm) with loss below 0.4 dB/km. A key component in realizing multi-band optical communication systems is the optical amplifier. Apart from having an ultra-wide gain profile, the ability of providing arbitrary gain profiles, in a controlled way, will become an essential feature. The latter will allow for signal power spectrum shaping which has a broad range of applications such as the maximization of the achievable information rate × distance product, the elimination of static and lossy gain flattening filters (GFF) enabling a power efficient system design, and the gain equalization of optical frequency combs. In this paper, we experimentally demonstrate a multi-band (S+C+L) programmable gain optical amplifier using only Raman effects and machine learning. The amplifier achieves >1000 programmable gain profiles within the range 3.5 to 30 dB, in an ultra-fast way and a very low maximum error of 1.6 cdot 10{-2} dB/THz over an ultra-wide bandwidth of 17.6-THz (140.7-nm).

Multi-Band Programmable Gain Raman Amplifier / De Moura, U. C.; Iqbal, M. A.; Kamalian, M.; Krzczanowicz, L.; Da Ros, F.; Rosa Brusin, A. M.; Carena, A.; Forysiak, W.; Turitsyn, S.; Zibar, D.. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - ELETTRONICO. - 39:2(2021), pp. 429-438. [10.1109/JLT.2020.3033768]

Multi-Band Programmable Gain Raman Amplifier

Rosa Brusin A. M.;Carena A.;
2021

Abstract

Optical communication systems, operating in C-band, are reaching their theoretically achievable capacity limits. An attractive and economically viable solution to satisfy the future data rate demands is to employ the transmission across the full low-loss spectrum encompassing O, E, S, C, and L band of the single mode fibers (SMF). Utilizing all five bands offers a bandwidth of up to sim53.5 THz (365 nm) with loss below 0.4 dB/km. A key component in realizing multi-band optical communication systems is the optical amplifier. Apart from having an ultra-wide gain profile, the ability of providing arbitrary gain profiles, in a controlled way, will become an essential feature. The latter will allow for signal power spectrum shaping which has a broad range of applications such as the maximization of the achievable information rate × distance product, the elimination of static and lossy gain flattening filters (GFF) enabling a power efficient system design, and the gain equalization of optical frequency combs. In this paper, we experimentally demonstrate a multi-band (S+C+L) programmable gain optical amplifier using only Raman effects and machine learning. The amplifier achieves >1000 programmable gain profiles within the range 3.5 to 30 dB, in an ultra-fast way and a very low maximum error of 1.6 cdot 10{-2} dB/THz over an ultra-wide bandwidth of 17.6-THz (140.7-nm).
File in questo prodotto:
File Dimensione Formato  
JLT_experimental_Raman_design_SCLband.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
09239870.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2902992