Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in the absence of a high temperature step for graphitization. In this work, the problem of ineffective thermal contacts is addressed by the use of bifunctional polyaromatic molecules designed to drive self-assembly of graphite nanoplates (GnP) and establish thermal bridges between them. To preserve the high conductivity associated to a defect-free sp2 structure, non-covalent functionalization with bispyrene compounds, synthesized on purpose with variable tethering chain length, was exploited. Pyrene terminal groups granted for a strong pi-pi interaction with graphene surface, as demonstrated by UV-Vis, fluorescence, and Raman spectroscopies. Bispyrene molecular junctions between GnP were found to control GnP organization and orientation within the nanopaper, delivering significant enhancement in both in-plane and cross-plane thermal diffusivities. Finally, nanopapers were validated as heat spreader devices for electronic components, evidencing comparable or better thermal dissipation performance than conventional Cu foil, while delivering over 90% weight reduction.

Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils / Ferraro, Giuseppe; Mar Bernal, M.; Carniato, Fabio; Novara, Chiara; Tortello, Mauro; Ronchetti, SILVIA MARIA; Giorgis, Fabrizio; Fina, Alberto. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - STAMPA. - 13:13(2021), pp. 15509-15517. [10.1021/acsami.1c00319]

Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils

Giuseppe Ferraro;Chiara Novara;Mauro Tortello;Silvia Ronchetti;Fabrizio Giorgis;Alberto Fina
2021

Abstract

Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in the absence of a high temperature step for graphitization. In this work, the problem of ineffective thermal contacts is addressed by the use of bifunctional polyaromatic molecules designed to drive self-assembly of graphite nanoplates (GnP) and establish thermal bridges between them. To preserve the high conductivity associated to a defect-free sp2 structure, non-covalent functionalization with bispyrene compounds, synthesized on purpose with variable tethering chain length, was exploited. Pyrene terminal groups granted for a strong pi-pi interaction with graphene surface, as demonstrated by UV-Vis, fluorescence, and Raman spectroscopies. Bispyrene molecular junctions between GnP were found to control GnP organization and orientation within the nanopaper, delivering significant enhancement in both in-plane and cross-plane thermal diffusivities. Finally, nanopapers were validated as heat spreader devices for electronic components, evidencing comparable or better thermal dissipation performance than conventional Cu foil, while delivering over 90% weight reduction.
File in questo prodotto:
File Dimensione Formato  
Ferraro_Bispyrene Functionalization Drives Self-Assembly of Graphite.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2886032