Regenerative pharmacology combines tissue engineering/regenerative medicine (TERM) with drug delivery with the aim to improve the outcomes of traditional TERM approaches. In this work, we aimed to design a multicomponent TERM platform comprising a three-dimensional scaffold, a thermosensitive hydrogel, and drug-loaded nanoparticles. We used a thermally induced phase separation method to obtain scaffolds with anisotropic mechanical properties, suitable for soft tissue engineering. A thermosensitive hydrogel was developed using a Poloxamer® 407-based poly(urethane) to embed curcumin-loaded nanoparticles, obtained by the single emulsion nanoprecipitation method. We found that encapsulated curcumin could retain its antioxidant activity and that embedding nanoparticles within the hydrogel did not affect the hydrogel gelation kinetics nor the possibility to progressively release the drug. The porous scaffold was easily loaded with the hydrogel, resulting in significantly enhanced (4-fold higher) absorption of a model molecule of nutrients (fluorescein isothiocyanate dextran 4kDa) from the surrounding environment compared to pristine scaffold. The developed platform could thus represent a valuable alternative in the treatment of many pathologies affecting soft tissues, by concurrently exploiting the therapeutic effects of drugs, with the 3D framework acting as a physical support for tissue regeneration and the cell-friendly environment represented by the hydrogel.

Designing multifunctional devices for regenerative pharmacology based on 3D scaffolds, drug-loaded nanoparticles, and thermosensitive hydrogels: a proof-of-concept study / Colucci, Francesco; Mancini, Vanessa; Mattu, Clara; Boffito, Monica. - In: PHARMACEUTICS. - ISSN 1999-4923. - ELETTRONICO. - 13:4(2021), pp. 1-22. [10.3390/pharmaceutics13040464]

Designing multifunctional devices for regenerative pharmacology based on 3D scaffolds, drug-loaded nanoparticles, and thermosensitive hydrogels: a proof-of-concept study

Clara Mattu;Monica Boffito
2021

Abstract

Regenerative pharmacology combines tissue engineering/regenerative medicine (TERM) with drug delivery with the aim to improve the outcomes of traditional TERM approaches. In this work, we aimed to design a multicomponent TERM platform comprising a three-dimensional scaffold, a thermosensitive hydrogel, and drug-loaded nanoparticles. We used a thermally induced phase separation method to obtain scaffolds with anisotropic mechanical properties, suitable for soft tissue engineering. A thermosensitive hydrogel was developed using a Poloxamer® 407-based poly(urethane) to embed curcumin-loaded nanoparticles, obtained by the single emulsion nanoprecipitation method. We found that encapsulated curcumin could retain its antioxidant activity and that embedding nanoparticles within the hydrogel did not affect the hydrogel gelation kinetics nor the possibility to progressively release the drug. The porous scaffold was easily loaded with the hydrogel, resulting in significantly enhanced (4-fold higher) absorption of a model molecule of nutrients (fluorescein isothiocyanate dextran 4kDa) from the surrounding environment compared to pristine scaffold. The developed platform could thus represent a valuable alternative in the treatment of many pathologies affecting soft tissues, by concurrently exploiting the therapeutic effects of drugs, with the 3D framework acting as a physical support for tissue regeneration and the cell-friendly environment represented by the hydrogel.
File in questo prodotto:
File Dimensione Formato  
pharmaceutics-13-00464.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.27 MB
Formato Adobe PDF
4.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2884268