Let g≥2 be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer Cg such that every natural number is the sum of at most Cg base-g Niven numbers.

Additive bases and Niven numbers / Sanna, Carlo. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - STAMPA. - 104:3(2021), pp. 373-380. [10.1017/S0004972721000186]

Additive bases and Niven numbers

CARLO SANNA
2021

Abstract

Let g≥2 be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer Cg such that every natural number is the sum of at most Cg base-g Niven numbers.
File in questo prodotto:
File Dimensione Formato  
temp.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 307.28 kB
Formato Adobe PDF
307.28 kB Adobe PDF Visualizza/Apri
additive-bases-and-niven-numbers.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 246.95 kB
Formato Adobe PDF
246.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2883056