Let g≥2 be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer Cg such that every natural number is the sum of at most Cg base-g Niven numbers.
Additive bases and Niven numbers / Sanna, Carlo. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - STAMPA. - 104:3(2021), pp. 373-380. [10.1017/S0004972721000186]
Additive bases and Niven numbers
CARLO SANNA
2021
Abstract
Let g≥2 be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer Cg such that every natural number is the sum of at most Cg base-g Niven numbers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
accesso aperto
Descrizione: pre print autore
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
307.28 kB
Formato
Adobe PDF
|
307.28 kB | Adobe PDF | Visualizza/Apri |
additive-bases-and-niven-numbers.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
246.95 kB
Formato
Adobe PDF
|
246.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2883056