Nonwoven fibrous mats based on semicrystalline networks are prepared starting from poly(ε-caprolactone) and properly combining electrospinning and solâgel reactions. The mats are obtained as continuous, randomly oriented micrometric fibers with different network densities. The systems are subjected to thermomechanical cycles to investigate their one-way and two-way shape memory behavior. One-way tests aim at exploring the effects of the deformation temperature on the materials response, with particular interest to the less investigated cold-working conditions (i.e., deformation temperature below Tm). The materials display two-way shape memory capabilities (i.e., the ability to change between two distinguished shapes upon heating and cooling under a fixed nonzero stress) and the effect of the applied stress is explored. The shape memory characterization is accompanied by an ex situ SEM analysis, to describe the concurrent microstructural evolution during the macroscopic shape variation, and by the assessment of their biocompatibility, to explore the suitability of the nonwovens for biomedical applications. (Figure presented.).
Mutifunctional Electrospun Nonwoven Mats with Two-Way Shape Memory Behavior Prepared from Sol-Gel Crosslinked Poly(epsilon-Caprolactone) / Pandini, Stefano; Agnelli, Silvia; Merlettini, Andrea; Chiellini, Federica; Gualandi, Chiara; Paderni, Katia; Focarete, Maria Letizia; Messori, Massimo; Toselli, Maurizio. - In: MACROMOLECULAR MATERIALS AND ENGINEERING. - ISSN 1438-7492. - 302:8(2017), pp. 1-19. [10.1002/mame.201600519]
Mutifunctional Electrospun Nonwoven Mats with Two-Way Shape Memory Behavior Prepared from Sol-Gel Crosslinked Poly(epsilon-Caprolactone)
Messori, Massimo;
2017
Abstract
Nonwoven fibrous mats based on semicrystalline networks are prepared starting from poly(ε-caprolactone) and properly combining electrospinning and solâgel reactions. The mats are obtained as continuous, randomly oriented micrometric fibers with different network densities. The systems are subjected to thermomechanical cycles to investigate their one-way and two-way shape memory behavior. One-way tests aim at exploring the effects of the deformation temperature on the materials response, with particular interest to the less investigated cold-working conditions (i.e., deformation temperature below Tm). The materials display two-way shape memory capabilities (i.e., the ability to change between two distinguished shapes upon heating and cooling under a fixed nonzero stress) and the effect of the applied stress is explored. The shape memory characterization is accompanied by an ex situ SEM analysis, to describe the concurrent microstructural evolution during the macroscopic shape variation, and by the assessment of their biocompatibility, to explore the suitability of the nonwovens for biomedical applications. (Figure presented.).File | Dimensione | Formato | |
---|---|---|---|
Macromol. Mater. Eng. 2017, 302, 1600519.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.12 MB
Formato
Adobe PDF
|
4.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2879091