A grape pomace extract (GPext) and a grape seed extract (T) have been melt mixed within poly(butylene succinate) (PBS) and tested as natural stabilizers. Their effect on the PBS stabilization has been evaluated trough thermo-mechanical degradative tests (reprocessing), thermo-oxidation (oven aging), thermogravimetric analysis (TGA) and biodegradation tests. GPext and T have been deeply analyzed in terms of polyphenolic profile and bioactivity to connect the stabilization's results with the antioxidant's structures. Additive T exhibited the best results, maintaining unaltered the PBS molecular weight both after six reprocessing steps and after 300 h of oven aging and to increase the degradation temperature of more than 20 °C. These encouraging results have been explained by the long-chains polyphenols present within T (medium degree of polymerization of 10.8), by the excellent radical scavenger activity of T (6.0 mM TEAC) and by the low releases of peroxides from T (0.06 µM H2O2).

Wine derived additives as poly(butylene succinate) (PBS) natural stabilizers for different degradative environments / Nanni, A.; Ricci, A.; Versari, A.; Messori, M.. - In: POLYMER DEGRADATION AND STABILITY. - ISSN 0141-3910. - ELETTRONICO. - 182:(2020), p. 109381. [10.1016/j.polymdegradstab.2020.109381]

Wine derived additives as poly(butylene succinate) (PBS) natural stabilizers for different degradative environments

Messori M.
2020

Abstract

A grape pomace extract (GPext) and a grape seed extract (T) have been melt mixed within poly(butylene succinate) (PBS) and tested as natural stabilizers. Their effect on the PBS stabilization has been evaluated trough thermo-mechanical degradative tests (reprocessing), thermo-oxidation (oven aging), thermogravimetric analysis (TGA) and biodegradation tests. GPext and T have been deeply analyzed in terms of polyphenolic profile and bioactivity to connect the stabilization's results with the antioxidant's structures. Additive T exhibited the best results, maintaining unaltered the PBS molecular weight both after six reprocessing steps and after 300 h of oven aging and to increase the degradation temperature of more than 20 °C. These encouraging results have been explained by the long-chains polyphenols present within T (medium degree of polymerization of 10.8), by the excellent radical scavenger activity of T (6.0 mM TEAC) and by the low releases of peroxides from T (0.06 µM H2O2).
File in questo prodotto:
File Dimensione Formato  
Polymer Degradation and Stability 182 (2020) 109381.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2878985