Congruent LiNbO3 single crystals with Ti ion dopants (2 and 5 mol%) were successfully grown by Czochralski technique in the automatic diameter control facility. As-grown crystal boules were oriented into (0 01) direction cut and optically polished for all measurements. Influence of Ti-ion incorporation into LiNbO3 was studied by core level XPS analysis. Powder X-ray diffraction studies were carried out on doped lithium niobate for phase identification. High-resolution X-ray diffraction technique was used to study the crystalline quality through full-width at half-maximum values. The refractive index values are more for doped samples than for pure sample as determined by prism coupling technique with different laser sources. © Indian Academy of Sciences.

X-ray photoelectron spectroscopy, high-resolution X-ray diffraction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal / Kumar, P.; Moorthy Babu, S.; Perero, S.; Sai, R. L.; Bhaumik, I.; Ganesamoorthy, S.; Karnal, A. K.. - In: PRAMANA-JOURNAL OF PHYSICS. - ISSN 0304-4289. - 75:5(2010), pp. 1035-1040. [10.1007/s12043-010-0159-8]

X-ray photoelectron spectroscopy, high-resolution X-ray diffraction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal

Perero S.;
2010

Abstract

Congruent LiNbO3 single crystals with Ti ion dopants (2 and 5 mol%) were successfully grown by Czochralski technique in the automatic diameter control facility. As-grown crystal boules were oriented into (0 01) direction cut and optically polished for all measurements. Influence of Ti-ion incorporation into LiNbO3 was studied by core level XPS analysis. Powder X-ray diffraction studies were carried out on doped lithium niobate for phase identification. High-resolution X-ray diffraction technique was used to study the crystalline quality through full-width at half-maximum values. The refractive index values are more for doped samples than for pure sample as determined by prism coupling technique with different laser sources. © Indian Academy of Sciences.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2878773