We consider the minimization of the NLS energy on a metric tree, either rooted or unrooted, subject to a mass constraint. With respect to the same problem on other types of metric graphs, several new features appear, such as the existence of minimizers with positive energy, and the emergence of unexpected threshold phenomena. We also study the problem with a radial symmetry constraint that is in principle different from the free problem due to the failure of the Pólya–Szegő inequality for radial rearrangements. A key role is played by a new Poincaré inequality with remainder.
NLS ground states on metric trees: existence results and open questions / Dovetta, S.; Serra, E.; Tilli, P.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - STAMPA. - 102:3(2020), pp. 1223-1240. [10.1112/jlms.12361]
Titolo: | NLS ground states on metric trees: existence results and open questions | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1112/jlms.12361 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
DST_trees_2020.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
1905.00655.pdf | pre print autore | 1. Preprint / submitted version [pre- review] | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2876005