Aerogels are emerging as one of the most intriguing and promising groups of microporous materials, characterized by impressive properties such as low density, high surface area, high porosity and tunable surface chemistry. Fostering unique thermal and acoustic insulation features, for several decades they mainly received attention from the aerospace and building sectors. More recently, new great opportunities arose due to significant advances in the drying technologies that currently, represent the enabling step for aerogel synthesis and fabrication. This process-ability dramatically increased the interest toward aerogels from new disciplines. This explains why in the last decade the Environmental Science and Energy fields significantly contributed to the expansion of the aerogel technology, suggesting novel uses and applications and contributing to extend the group of materials that can be synthetized by aerogel processing. New, unforeseen properties emerged for aerogel materials, such as adsorption of contaminants and fluids purification, catalysis of different reactions, electrical conductivity. The present short-review aims at providing a critical overview of the key advances in the development of aerogels for energy and environmental applications, especially emphasizing the common strategies and properties that are turning aerogels into one of the new key emerging technologies of these areas of science.

Aerogels for energy and environmental applications / Fontanazza, G.; Quaglio, M.; Pirri, C. F.; Verga, F.. - In: GEAM. GEOINGEGNERIA AMBIENTALE E MINERARIA. - ISSN 1121-9041. - ELETTRONICO. - 159:1(2020), pp. 14-25.

Aerogels for energy and environmental applications

Fontanazza G.;Quaglio M.;Pirri C. F.;Verga F.
2020

Abstract

Aerogels are emerging as one of the most intriguing and promising groups of microporous materials, characterized by impressive properties such as low density, high surface area, high porosity and tunable surface chemistry. Fostering unique thermal and acoustic insulation features, for several decades they mainly received attention from the aerospace and building sectors. More recently, new great opportunities arose due to significant advances in the drying technologies that currently, represent the enabling step for aerogel synthesis and fabrication. This process-ability dramatically increased the interest toward aerogels from new disciplines. This explains why in the last decade the Environmental Science and Energy fields significantly contributed to the expansion of the aerogel technology, suggesting novel uses and applications and contributing to extend the group of materials that can be synthetized by aerogel processing. New, unforeseen properties emerged for aerogel materials, such as adsorption of contaminants and fluids purification, catalysis of different reactions, electrical conductivity. The present short-review aims at providing a critical overview of the key advances in the development of aerogels for energy and environmental applications, especially emphasizing the common strategies and properties that are turning aerogels into one of the new key emerging technologies of these areas of science.
File in questo prodotto:
File Dimensione Formato  
Geam 159_Verga.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 441.75 kB
Formato Adobe PDF
441.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2874969