For every positive integer n and for every α∈[0,1], let B(n,α) denote the probabilistic model in which a random set A⊆{1,…,n} is constructed by picking independently each element of {1,…,n} with probability α. Cilleruelo, Rué, Šarka, and Zumalacárregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of A.Let q be an indeterminate and let [k]q:=1+q+q2+⋯+qk−1∈Z[q] be the q-analog of the positive integer k. We determine the expected value and the variance of X:=deglcm([A]q), where [A]q:={[k]q:k∈A}. Then we prove an almost sure asymptotic formula for X, which is a q-analog of the result of Cilleruelo et al.

On the least common multiple of random q-integers / Sanna, Carlo. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-9555. - STAMPA. - 7:1(2021). [10.1007/s40993-021-00242-4]

On the least common multiple of random q-integers

Carlo Sanna
2021

Abstract

For every positive integer n and for every α∈[0,1], let B(n,α) denote the probabilistic model in which a random set A⊆{1,…,n} is constructed by picking independently each element of {1,…,n} with probability α. Cilleruelo, Rué, Šarka, and Zumalacárregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of A.Let q be an indeterminate and let [k]q:=1+q+q2+⋯+qk−1∈Z[q] be the q-analog of the positive integer k. We determine the expected value and the variance of X:=deglcm([A]q), where [A]q:={[k]q:k∈A}. Then we prove an almost sure asymptotic formula for X, which is a q-analog of the result of Cilleruelo et al.
File in questo prodotto:
File Dimensione Formato  
temp.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 303.09 kB
Formato Adobe PDF
303.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sanna2021_Article_OnTheLeastCommonMultipleOfRand.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 350.46 kB
Formato Adobe PDF
350.46 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2872308