For every positive integer n and for every α∈[0,1], let B(n,α) denote the probabilistic model in which a random set A⊆{1,…,n} is constructed by picking independently each element of {1,…,n} with probability α. Cilleruelo, Rué, Šarka, and Zumalacárregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of A.Let q be an indeterminate and let [k]q:=1+q+q2+⋯+qk−1∈Z[q] be the q-analog of the positive integer k. We determine the expected value and the variance of X:=deglcm([A]q), where [A]q:={[k]q:k∈A}. Then we prove an almost sure asymptotic formula for X, which is a q-analog of the result of Cilleruelo et al.
On the least common multiple of random q-integers / Sanna, Carlo. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-9555. - STAMPA. - 7:1(2021). [10.1007/s40993-021-00242-4]
On the least common multiple of random q-integers
Carlo Sanna
2021
Abstract
For every positive integer n and for every α∈[0,1], let B(n,α) denote the probabilistic model in which a random set A⊆{1,…,n} is constructed by picking independently each element of {1,…,n} with probability α. Cilleruelo, Rué, Šarka, and Zumalacárregui proved an almost sure asymptotic formula for the logarithm of the least common multiple of the elements of A.Let q be an indeterminate and let [k]q:=1+q+q2+⋯+qk−1∈Z[q] be the q-analog of the positive integer k. We determine the expected value and the variance of X:=deglcm([A]q), where [A]q:={[k]q:k∈A}. Then we prove an almost sure asymptotic formula for X, which is a q-analog of the result of Cilleruelo et al.File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
303.09 kB
Formato
Adobe PDF
|
303.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Sanna2021_Article_OnTheLeastCommonMultipleOfRand.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
350.46 kB
Formato
Adobe PDF
|
350.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2872308