Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction between a population of dividing cells and a population of non-dividing cells. The two cell populations are characterised by different mobilities. We present the results of numerical simulations displaying two-dimensional spherical waves with sharp interfaces between dividing and non-dividing cells. Furthermore, we numerically observe how different ratios between the mobilities change the morphology of the interfaces, and lead to the emergence of finger-like patterns of invasion above a threshold. Motivated by these simulations, we study the existence of one-dimensional travelling wave solutions.
On interfaces between cell populations with different mobilities / Lorenzi, T.; Lorz, A.; Perthame, B.. - In: KINETIC AND RELATED MODELS. - ISSN 1937-5093. - 10:1(2017), pp. 299-311. [10.3934/krm.2017012]
On interfaces between cell populations with different mobilities
Lorenzi T.;
2017
Abstract
Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction between a population of dividing cells and a population of non-dividing cells. The two cell populations are characterised by different mobilities. We present the results of numerical simulations displaying two-dimensional spherical waves with sharp interfaces between dividing and non-dividing cells. Furthermore, we numerically observe how different ratios between the mobilities change the morphology of the interfaces, and lead to the emergence of finger-like patterns of invasion above a threshold. Motivated by these simulations, we study the existence of one-dimensional travelling wave solutions.File | Dimensione | Formato | |
---|---|---|---|
2870805_pdfedit.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
946.05 kB
Formato
Adobe PDF
|
946.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2870805preprint.pdf
accesso aperto
Descrizione: pre print autore
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2870805