The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.
On the nonlinear Dirac equation on noncompact metric graphs / Borrelli, W.; Carlone, R.; Tentarelli, L.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 278:(2021), pp. 326-357. [10.1016/j.jde.2021.01.005]
On the nonlinear Dirac equation on noncompact metric graphs
Tentarelli L.
2021
Abstract
The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.File | Dimensione | Formato | |
---|---|---|---|
Borrelli W., Carlone R. Tentarelli L. - On the nonlinear Dirac equation on noncompact metric graphs, 2021.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
488.47 kB
Formato
Adobe PDF
|
488.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Dirac-grafo-esteso-revised_for_replacement arxiv.pdf
Open Access dal 15/01/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
401.44 kB
Formato
Adobe PDF
|
401.44 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2869660