The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.

On the nonlinear Dirac equation on noncompact metric graphs / Borrelli, W.; Carlone, R.; Tentarelli, L.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 278:(2021), pp. 326-357. [10.1016/j.jde.2021.01.005]

On the nonlinear Dirac equation on noncompact metric graphs

Tentarelli L.
2021

Abstract

The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.
File in questo prodotto:
File Dimensione Formato  
Borrelli W., Carlone R. Tentarelli L. - On the nonlinear Dirac equation on noncompact metric graphs, 2021.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 488.47 kB
Formato Adobe PDF
488.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Dirac-grafo-esteso-revised_for_replacement arxiv.pdf

Open Access dal 15/01/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 401.44 kB
Formato Adobe PDF
401.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2869660