The movement of organisms and cells can be governed by occasional long distance runs, according to an approximate Lévy walk. For T cells migrating through chronically-infected brain tissue, runs are further interrupted by long pauses and the aim here is to clarify the form of continuous model equations that describe such movements. Starting from a microscopic velocity-jump model based on experimental observations, we include power-law distributions of run and waiting times and investigate the relevant parabolic limit from a kinetic equation for resting and moving individuals. In biologically relevant regimes we derive nonlocal diffusion equations, including fractional Laplacians in space and fractional time derivatives. Its analysis and numerical experiments shed light on how the searching strategy, and the impact from chemokinesis responses to chemokines, shorten the average time taken to find rare targets in the absence of direct guidance information such as chemotaxis.
Space-Time fractional diffusion in cell movement models with delay / Estrada-Rodriguez, G.; Gimperlein, H.; Painter, K. J.; Stocek, J.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 29:1(2019), pp. 65-88. [10.1142/S0218202519500039]
Space-Time fractional diffusion in cell movement models with delay
Painter K. J.;
2019
Abstract
The movement of organisms and cells can be governed by occasional long distance runs, according to an approximate Lévy walk. For T cells migrating through chronically-infected brain tissue, runs are further interrupted by long pauses and the aim here is to clarify the form of continuous model equations that describe such movements. Starting from a microscopic velocity-jump model based on experimental observations, we include power-law distributions of run and waiting times and investigate the relevant parabolic limit from a kinetic equation for resting and moving individuals. In biologically relevant regimes we derive nonlocal diffusion equations, including fractional Laplacians in space and fractional time derivatives. Its analysis and numerical experiments shed light on how the searching strategy, and the impact from chemokinesis responses to chemokines, shorten the average time taken to find rare targets in the absence of direct guidance information such as chemotaxis.File | Dimensione | Formato | |
---|---|---|---|
Estradaetal2019Accepted.pdf
Open Access dal 28/12/2019
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
623.4 kB
Formato
Adobe PDF
|
623.4 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2869192