This article deals with the application of the partial least-squares (PLS) regression to the uncertainty quantification of an integrated wireless power transfer with 30 random variables. It considers the development of surrogate models using a limited set of training samples in order to estimate statistical quantities of the converter efficiency with a relatively low computational cost compared with the standard brute-force Monte Carlo (MC) simulation. The strength, the performance, and the features of the proposed modeling approach are then compared with the ones of an advanced probabilistic surrogate model combining the least-squares support vector machine (LS-SVM) and the Gaussian process regression (GPR). The MC simulation is considered as a reference.

Analysis of Parameter Variability in an Integrated Wireless Power Transfer System via Partial Least-Squares Regression / Larbi, Mourad; Trinchero, Riccardo; Canavero, Flavio G.; Besnier, Philippe; Swaminathan, Madhavan. - In: IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY. - ISSN 2156-3950. - ELETTRONICO. - 10:11(2020), pp. 1795-1802. [10.1109/tcpmt.2020.3002226]

Analysis of Parameter Variability in an Integrated Wireless Power Transfer System via Partial Least-Squares Regression

Riccardo Trinchero;Flavio G. Canavero;
2020

Abstract

This article deals with the application of the partial least-squares (PLS) regression to the uncertainty quantification of an integrated wireless power transfer with 30 random variables. It considers the development of surrogate models using a limited set of training samples in order to estimate statistical quantities of the converter efficiency with a relatively low computational cost compared with the standard brute-force Monte Carlo (MC) simulation. The strength, the performance, and the features of the proposed modeling approach are then compared with the ones of an advanced probabilistic surrogate model combining the least-squares support vector machine (LS-SVM) and the Gaussian process regression (GPR). The MC simulation is considered as a reference.
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri
09116816.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2863712