Inspired by the work of Lu and Tian (Duke Math J 125(2):351–387, 2004), in this paper we address the problem of studying those Kähler manifolds satisfying the Δ -property, i.e. such that on a neighborhood of each of its points the kth power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k (see below for its definition). We prove two results: (1) if a Kähler manifold satisfies the Δ -property then its curvature tensor is parallel; (2) if an Hermitian symmetric space of classical type satisfies the Δ -property then it is a complex space form (namely it has constant holomorphic sectional curvature). In view of these results we believe that if a Kähler manifold satisfies the Δ -property then it is a complex space form.
A characterization of complex space forms via Laplace operators / Loi, A.; Salis, F.; Zuddas, F.. - In: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG. - ISSN 0025-5858. - 90:1(2020), pp. 99-109. [10.1007/s12188-020-00220-0]
A characterization of complex space forms via Laplace operators
Salis F.;
2020
Abstract
Inspired by the work of Lu and Tian (Duke Math J 125(2):351–387, 2004), in this paper we address the problem of studying those Kähler manifolds satisfying the Δ -property, i.e. such that on a neighborhood of each of its points the kth power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k (see below for its definition). We prove two results: (1) if a Kähler manifold satisfies the Δ -property then its curvature tensor is parallel; (2) if an Hermitian symmetric space of classical type satisfies the Δ -property then it is a complex space form (namely it has constant holomorphic sectional curvature). In view of these results we believe that if a Kähler manifold satisfies the Δ -property then it is a complex space form.File | Dimensione | Formato | |
---|---|---|---|
loi SALIS zuddas - AbhMathSeminUnivHambg.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
arxiv-preprint-1912.08879 (1).pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
179.13 kB
Formato
Adobe PDF
|
179.13 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2862038