Inspired by the work of Lu and Tian (Duke Math J 125(2):351–387, 2004), in this paper we address the problem of studying those Kähler manifolds satisfying the Δ -property, i.e. such that on a neighborhood of each of its points the kth power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k (see below for its definition). We prove two results: (1) if a Kähler manifold satisfies the Δ -property then its curvature tensor is parallel; (2) if an Hermitian symmetric space of classical type satisfies the Δ -property then it is a complex space form (namely it has constant holomorphic sectional curvature). In view of these results we believe that if a Kähler manifold satisfies the Δ -property then it is a complex space form.

A characterization of complex space forms via Laplace operators / Loi, A.; Salis, F.; Zuddas, F.. - In: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG. - ISSN 0025-5858. - 90:1(2020), pp. 99-109. [10.1007/s12188-020-00220-0]

A characterization of complex space forms via Laplace operators

Salis F.;
2020

Abstract

Inspired by the work of Lu and Tian (Duke Math J 125(2):351–387, 2004), in this paper we address the problem of studying those Kähler manifolds satisfying the Δ -property, i.e. such that on a neighborhood of each of its points the kth power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k (see below for its definition). We prove two results: (1) if a Kähler manifold satisfies the Δ -property then its curvature tensor is parallel; (2) if an Hermitian symmetric space of classical type satisfies the Δ -property then it is a complex space form (namely it has constant holomorphic sectional curvature). In view of these results we believe that if a Kähler manifold satisfies the Δ -property then it is a complex space form.
File in questo prodotto:
File Dimensione Formato  
loi SALIS zuddas - AbhMathSeminUnivHambg.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
arxiv-preprint-1912.08879 (1).pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 179.13 kB
Formato Adobe PDF
179.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2862038