A reliable clinical assay based on circulating microRNAs (miRNAs) as biomarkers is highly required. Microdevices offer an attractive solution as a fast and inexpensive way of concentrating these biomarkers from a low sample volume. A previously developed polydimethylsiloxane (PDMS) microdevice able to purify and detect circulating miRNAs was here optimized. The optimization of the morphological and chemical surface properties by nanopatterning and functionalization is presented. Surfaces were firstly characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), fluorescamine assay and s-SDTB (sulphosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate) assay and subsequently tested for their capacity to adsorb a fluorescent miRNA. From our analysis, modification of surface charge with 0.1% APTMS ((3-Aminopropyl)trimethoxysilane) and 0.9% PEG-s (2-[Methoxy-(polyethyleneoxy)propyl]trimethoxysilane) performed at 60 °C for 10 min was identified as the best purification condition. Our optimized microdevice integrated with real-time PCR detection, was demonstrated to selectively purify both synthetic and natural circulating miRNAs with a sensitivity of 0.01 pM.

miRNA purification with an optimized PDMS microdevice: Toward the direct purification of low abundant circulating biomarkers / Santini, G. C.; Potrich, C.; Lunelli, L.; Vanzetti, L.; Marasso, S. L.; Cocuzza, M.; Pirri, F. C.; Pederzolli, C.. - In: BIOPHYSICAL CHEMISTRY. - ISSN 0301-4622. - ELETTRONICO. - 229:(2017), pp. 142-150. [10.1016/j.bpc.2017.04.009]

miRNA purification with an optimized PDMS microdevice: Toward the direct purification of low abundant circulating biomarkers

Marasso S. L.;Cocuzza M.;Pirri F. C.;
2017

Abstract

A reliable clinical assay based on circulating microRNAs (miRNAs) as biomarkers is highly required. Microdevices offer an attractive solution as a fast and inexpensive way of concentrating these biomarkers from a low sample volume. A previously developed polydimethylsiloxane (PDMS) microdevice able to purify and detect circulating miRNAs was here optimized. The optimization of the morphological and chemical surface properties by nanopatterning and functionalization is presented. Surfaces were firstly characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), fluorescamine assay and s-SDTB (sulphosuccinimidyl-4-o-(4,4-dimethoxytrityl) butyrate) assay and subsequently tested for their capacity to adsorb a fluorescent miRNA. From our analysis, modification of surface charge with 0.1% APTMS ((3-Aminopropyl)trimethoxysilane) and 0.9% PEG-s (2-[Methoxy-(polyethyleneoxy)propyl]trimethoxysilane) performed at 60 °C for 10 min was identified as the best purification condition. Our optimized microdevice integrated with real-time PCR detection, was demonstrated to selectively purify both synthetic and natural circulating miRNAs with a sensitivity of 0.01 pM.
File in questo prodotto:
File Dimensione Formato  
miRNA purification with an optimized PDMS microdevice - toward the direct purification of low abundant circulating biomarkers.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 686.17 kB
Formato Adobe PDF
686.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2860920