A current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case that I = I_X is an ideal defining an almost complete intersection (ACI) set of points X in P1XP1. In particular,we describe a minimal free bigraded resolution of a non arithmetically Cohen-Macaulay(also non homogeneous) set Z of fat points whose support is an ACI generalizing Corollary4.6 given in [5] for homogeneous sets of triple points. We call Z a fat ACI. We also show that its symbolic and ordinary powers are equal, i.e., I_Z^{(m)}= I_Z^m for any $mgeq1$.
The minimal free resolution of fat almost complete intersections in ℙ1 x ℙ1 / Favacchio, G.; Guardo, E.. - In: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES. - ISSN 0008-414X. - STAMPA. - 69:6(2017), pp. 1274-1291.
Titolo: | The minimal free resolution of fat almost complete intersections in ℙ1 x ℙ1 |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.4153/CJM-2016-040-4 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
FG-postprint editoriale - canadian.pdf | Articolo principale | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
FG- postprint draft - canadian.pdf | Articolo principale | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2859980