We study new primality tests based on linear recurrent sequences of degree two exploiting a matrix approach. The classical Lucas test arises as a particular case and we see how it can be easily improved. Moreover, this approach shows clearly how the Lucas pseudoprimes are connected to the Pell equation and the Brahamagupta product. We also introduce two new specific primality tests, which we will call generalized Lucas test and generalized Pell test. We perform some numerical computations on the new primality tests and we do not find any pseudoprime up to 238. Moreover, we combined the generalized Lucas test with the Fermat test up to 264 and we did not find any composite number that passes the test. We get the same result using the generalized Pell test.
Primality tests, linear recurrent sequences and the Pell equation / Bazzanella, Danilo; Di Scala, Antonio; Dutto, Simone; Murru, Nadir. - In: RAMANUJAN JOURNAL. - ISSN 1382-4090. - 57:2(2022), pp. 755-768. [10.1007/s11139-020-00373-9]
Primality tests, linear recurrent sequences and the Pell equation
Bazzanella, Danilo;Di Scala, Antonio;Dutto, Simone;
2022
Abstract
We study new primality tests based on linear recurrent sequences of degree two exploiting a matrix approach. The classical Lucas test arises as a particular case and we see how it can be easily improved. Moreover, this approach shows clearly how the Lucas pseudoprimes are connected to the Pell equation and the Brahamagupta product. We also introduce two new specific primality tests, which we will call generalized Lucas test and generalized Pell test. We perform some numerical computations on the new primality tests and we do not find any pseudoprime up to 238. Moreover, we combined the generalized Lucas test with the Fermat test up to 264 and we did not find any composite number that passes the test. We get the same result using the generalized Pell test.| File | Dimensione | Formato | |
|---|---|---|---|
| 2002.08062.pdf accesso riservato 
											Descrizione: Articolo
										 
											Tipologia:
											1. Preprint / submitted version [pre- review]
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										429.45 kB
									 
										Formato
										Adobe PDF
									 | 429.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| pseudo-exp-rev.pdf Open Access dal 08/02/2022 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										301.6 kB
									 
										Formato
										Adobe PDF
									 | 301.6 kB | Adobe PDF | Visualizza/Apri | 
| s11139-020-00373-9.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										321.62 kB
									 
										Formato
										Adobe PDF
									 | 321.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2859494
			
		
	
	
	
			      	