Mustaţǎ (1997) stated a generalized version of the minimal resolution conjecture for a set Z of general points in arbitrary projective varieties and he predicted the graded Betti numbers of the minimal free resolution of IZ. In this paper, we address this conjecture and we prove that it holds for a general set Z of points on any (not necessarily normal) del Pezzo surface X ⊆ ℙ d - up to three sporadic cases - whose cardinality {pipe}Z{pipe} sits into the interval [P X(r - 1),m(r)] or [n(r),P X(r)], r ≥ 4, where P X(r) is the Hilbert polynomial of X, m(r):= dr 2 + r(2 - d) and n(r):= dr 2 + r(d - 2). As a corollary we prove: (1) Mustaţǎ's conjecture for a general set of s ≥ 19 points on any integral cubic surface in ℙ 3; and (2) the ideal generation conjecture and the Cohen-Macaulay type conjecture for a general set of cardinality s ≥ 6d + 1 on a del Pezzo surface X ⊆ ℙ d. © 2012 by Mathematical Sciences Publishers.

The minimal resolution conjecture for points on del Pezzo surfaces / Miro-Roig, R. M.; PONS LLOPIS, JUAN FRANCISCO. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 6:1(2012), pp. 27-46. [10.2140/ant.2012.6.27]

The minimal resolution conjecture for points on del Pezzo surfaces

Pons-Llopis Juan Francisco
2012

Abstract

Mustaţǎ (1997) stated a generalized version of the minimal resolution conjecture for a set Z of general points in arbitrary projective varieties and he predicted the graded Betti numbers of the minimal free resolution of IZ. In this paper, we address this conjecture and we prove that it holds for a general set Z of points on any (not necessarily normal) del Pezzo surface X ⊆ ℙ d - up to three sporadic cases - whose cardinality {pipe}Z{pipe} sits into the interval [P X(r - 1),m(r)] or [n(r),P X(r)], r ≥ 4, where P X(r) is the Hilbert polynomial of X, m(r):= dr 2 + r(2 - d) and n(r):= dr 2 + r(d - 2). As a corollary we prove: (1) Mustaţǎ's conjecture for a general set of s ≥ 19 points on any integral cubic surface in ℙ 3; and (2) the ideal generation conjecture and the Cohen-Macaulay type conjecture for a general set of cardinality s ≥ 6d + 1 on a del Pezzo surface X ⊆ ℙ d. © 2012 by Mathematical Sciences Publishers.
File in questo prodotto:
File Dimensione Formato  
ant-v6-n1-p02-s.pdf

non disponibili

Descrizione: articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2859416