Whereas the commercialization of dye‐sensitized solar cells (DSSCs) is finally proceeding taking advantage of their low cost and tunable optical features, such as colour and transparency for both indoor and building‐integrated applications, the corresponding aqueous counterpart is still at its infancy. As the TiO2 electrode is a fundamental component for hybrid solar cells, this work investigates the effect of different molecular (α‐terpineol, propylene carbonate) and polymeric (polyethylene oxide, polyethylene glycol, carboxymethyl cellulose and xanthan gum) additives that can be introduced into a commercial TiO2 paste for for screen‐printing (or doctor blade). Among all, the addition of polyethylene glycol leads to the best cell performances, with markedly increased short‐circuit current density (+18 %) and power conversion efficiency (+48 %) with respect to the pristine (commercial) counterpart. When further explored at different concentration levels, electrodes fabricated from polyethylene glycol‐based pastes show different morphologies, thicknesses and performances, which are investigated through (photo)electrochemical, structural, physical‐chemical and microscopic techniques.

Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO2 Paste / Fagiolari, L.; Bonomo, M.; Cognetti, A.; Meligrana, G.; Gerbaldi, C.; Barolo, C.; Bella, F.. - In: CHEMSUSCHEM. - ISSN 1864-564X. - ELETTRONICO. - 13:24(2020), pp. 6562-6573. [10.1002/cssc.202001898]

Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO2 Paste

L. Fagiolari;A. Cognetti;G. Meligrana;C. Gerbaldi;F. Bella
2020

Abstract

Whereas the commercialization of dye‐sensitized solar cells (DSSCs) is finally proceeding taking advantage of their low cost and tunable optical features, such as colour and transparency for both indoor and building‐integrated applications, the corresponding aqueous counterpart is still at its infancy. As the TiO2 electrode is a fundamental component for hybrid solar cells, this work investigates the effect of different molecular (α‐terpineol, propylene carbonate) and polymeric (polyethylene oxide, polyethylene glycol, carboxymethyl cellulose and xanthan gum) additives that can be introduced into a commercial TiO2 paste for for screen‐printing (or doctor blade). Among all, the addition of polyethylene glycol leads to the best cell performances, with markedly increased short‐circuit current density (+18 %) and power conversion efficiency (+48 %) with respect to the pristine (commercial) counterpart. When further explored at different concentration levels, electrodes fabricated from polyethylene glycol‐based pastes show different morphologies, thicknesses and performances, which are investigated through (photo)electrochemical, structural, physical‐chemical and microscopic techniques.
2020
File in questo prodotto:
File Dimensione Formato  
L. Fagiolari et al., ChemSusChem 13 (2020) 6562-6573.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Manuscript_revised.pdf

Open Access dal 09/10/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2858932