Proper microstructural and transport properties are fundamental requirements for a suitable scaffold design and realization in tissue engineering applications. Scaffold microstructure (i.e. pore size, shape and distribution) and transport properties (i.e. intrinsic permeability), are commonly recognized as the key parameters related to the biological performance, such as cell attachment, penetration depth and tissue vascularization. While pore characteristics are relatively easy to asses, accurate and reliable evaluation of permeability still remains a challenge. In the present study, the microstructural properties of foam-replicated bioactive glass-derived scaffolds (basic composition 47.5SiO2–2.5P2O5–20CaO–10MgO–10Na2O–10K2O mol.%) were determined as function of the sintering temperature within the range 600-850°C, identified on the basis of thermal analyses that were previously performed on the material. Scaffolds with total porosity between 55 and 84 vol.% and trabecular-like architecture were obtained, with pore morphological features varying according to the sintering temperature. Mathematical modelling, supported by micro-computed tomography (μ-CT) imaging, was implemented to selectively investigate the effect of different pore features on intrinsic permeability, which was determined by laminar airflow alternating pressure wave drop measurements and found to be within 0.051-2.811·10−10 m2. The calculated effective porosity of the scaffolds was in the range of 46 to 66 vol.%, while the average pore diameter assessed by μ-CT varied between 220 and 780 μm, where the values in the lower range were observed for higher sintering temperatures (750-850°C). Experimental results were critically discussed by means of a robust statistical analysis. Finally, the complete microstructural characterization of the scaffolds was achieved by applying the general constitutive equation based on Forchheimer's theory.

Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: experimental measurements by pressure wave drop, modelling and computed tomography-based analysis / Fiume, E.; Schiavi, A.; Orlygsson, G.; Bignardi, C.; Verne', E.; Baino, F.. - In: ACTA BIOMATERIALIA. - ISSN 1742-7061. - ELETTRONICO. - 119:(2021), pp. 405-418. [10.1016/j.actbio.2020.10.027]

Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: experimental measurements by pressure wave drop, modelling and computed tomography-based analysis

Fiume E.;Bignardi C.;Verne' E.;Baino F.
2021

Abstract

Proper microstructural and transport properties are fundamental requirements for a suitable scaffold design and realization in tissue engineering applications. Scaffold microstructure (i.e. pore size, shape and distribution) and transport properties (i.e. intrinsic permeability), are commonly recognized as the key parameters related to the biological performance, such as cell attachment, penetration depth and tissue vascularization. While pore characteristics are relatively easy to asses, accurate and reliable evaluation of permeability still remains a challenge. In the present study, the microstructural properties of foam-replicated bioactive glass-derived scaffolds (basic composition 47.5SiO2–2.5P2O5–20CaO–10MgO–10Na2O–10K2O mol.%) were determined as function of the sintering temperature within the range 600-850°C, identified on the basis of thermal analyses that were previously performed on the material. Scaffolds with total porosity between 55 and 84 vol.% and trabecular-like architecture were obtained, with pore morphological features varying according to the sintering temperature. Mathematical modelling, supported by micro-computed tomography (μ-CT) imaging, was implemented to selectively investigate the effect of different pore features on intrinsic permeability, which was determined by laminar airflow alternating pressure wave drop measurements and found to be within 0.051-2.811·10−10 m2. The calculated effective porosity of the scaffolds was in the range of 46 to 66 vol.%, while the average pore diameter assessed by μ-CT varied between 220 and 780 μm, where the values in the lower range were observed for higher sintering temperatures (750-850°C). Experimental results were critically discussed by means of a robust statistical analysis. Finally, the complete microstructural characterization of the scaffolds was achieved by applying the general constitutive equation based on Forchheimer's theory.
File in questo prodotto:
File Dimensione Formato  
Permeability scaffold_Acta Biomater 2021.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Manuscript_Scaffold permeability_R2.docx

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.5 MB
Formato Microsoft Word XML
2.5 MB Microsoft Word XML   Visualizza/Apri   Richiedi una copia
Manuscript_Scaffold permeability_R2.pdf

embargo fino al 20/10/2022

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2858878