Given two sets of positive integers A and B, let AB: = { ab: a∈ A, b∈ B} be their product set and put Ak: = A⋯ A (k times A) for any positive integer k. Moreover, for every positive integer n and every α= α(n) ∈ [0 , 1] , let B(n, α) denote the probabilistic model in which a random set A⊆ { 1 , … , n} is constructed by choosing independently every element of { 1 , … , n} with probability α. We prove that if A1, … , As are random sets in B(n1, α1) , … , B(ns, αs) , respectively, k1, … , ks are fixed positive integers, αini→ + ∞, and 1 / αi does not grow too fast in terms of a product of log nj; then |A1k1⋯Asks|∼|A1|k1k1!⋯|As|ksks! with probability 1 - o(1). This is a generalization of a result of Cilleruelo, Ramana, and Ramaré [3], who considered the case s= 1 and k1= 2.
A note on product sets of random sets / Sanna, Carlo. - In: ACTA MATHEMATICA HUNGARICA. - ISSN 0236-5294. - STAMPA. - 162:1(2020), pp. 76-83.
Titolo: | A note on product sets of random sets |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10474-019-01014-4 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
temp.pdf | Articolo principale | 1. Preprint / Submitted Version | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
Sanna2020_Article_ANoteOnProductSetsOfRandomSets.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2858704