Recent research in both the experimental and mathematical communities has focused on biochemical interaction systems that satisfy an "absolute concentration robustness" (ACR) property. The ACR property was first discovered experimentally when, in a number of different systems, the concentrations of key system components at equilibrium were observed to be robust to the total concentration levels of the system. Follow-up mathematical work focused on deterministic models of biochemical systems and demonstrated how chemical reaction network theory can be utilized to explain this robustness. Later mathematical work focused on the behavior of this same class of reaction networks, though under the assumption that the dynamics were stochastic. Under the stochastic assumption, it was proven that the system will undergo an extinction event with a probability of one so long as the system is conservative, showing starkly different long-time behavior than in the deterministic setting. Here we consider a general class of stochastic models that intersects with the class of ACR systems studied previously. We consider a specific system scaling over compact time intervals and prove that in a limit of this scaling the distribution of the abundances of the ACR species converges to a certain product-form Poisson distribution whose mean is the ACR value of the deterministic model. This result is in agreement with recent conjectures pertaining to the behavior of ACR networks endowed with stochastic kinetics, and helps to resolve the conflicting theoretical results pertaining to deterministic and stochastic models in this setting.

Finite time distributions of stochastically modeled chemical systems with absolute concentration robustness / Anderson, D. F.; Cappelletti, D.; Kurtz, T. G.. - In: SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS. - ISSN 1536-0040. - 16:3(2017), pp. 1309-1339. [10.1137/16M1070773]

Finite time distributions of stochastically modeled chemical systems with absolute concentration robustness

Cappelletti D.;
2017

Abstract

Recent research in both the experimental and mathematical communities has focused on biochemical interaction systems that satisfy an "absolute concentration robustness" (ACR) property. The ACR property was first discovered experimentally when, in a number of different systems, the concentrations of key system components at equilibrium were observed to be robust to the total concentration levels of the system. Follow-up mathematical work focused on deterministic models of biochemical systems and demonstrated how chemical reaction network theory can be utilized to explain this robustness. Later mathematical work focused on the behavior of this same class of reaction networks, though under the assumption that the dynamics were stochastic. Under the stochastic assumption, it was proven that the system will undergo an extinction event with a probability of one so long as the system is conservative, showing starkly different long-time behavior than in the deterministic setting. Here we consider a general class of stochastic models that intersects with the class of ACR systems studied previously. We consider a specific system scaling over compact time intervals and prove that in a limit of this scaling the distribution of the abundances of the ACR species converges to a certain product-form Poisson distribution whose mean is the ACR value of the deterministic model. This result is in agreement with recent conjectures pertaining to the behavior of ACR networks endowed with stochastic kinetics, and helps to resolve the conflicting theoretical results pertaining to deterministic and stochastic models in this setting.
File in questo prodotto:
File Dimensione Formato  
Finite_Time_Distributions_of_Stochastically_Modeled_Chemical_Systems_with_ACR.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 331.92 kB
Formato Adobe PDF
331.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2857252