Time reversal invariance (TRI) of particles systems has many consequences, among which the celebrated Onsager reciprocal relations, a milestone in Statistical Mechanics dating back to 1931. Because for a long time it was believed that (TRI) dos not hold in presence of a magnetic field, a modification of such relations was proposed by Casimir in 1945. Only in the last decade, the strict traditional notion of reversibility that led to Casimir’s work has been questioned. It was then found that other symmetries can be used, which allow the Onsager reciprocal relations to hold without modification. In this paper we advance this investigation for classical Hamiltonian systems, substantially increasing the number of symmetries that yield TRI in presence of a magnetic field. We first deduce the most general form of a generalized time reversal operation on the phase space of such a system; secondly, we express sufficient conditions on the magnetic field which ensure TRI. Finally, we examine common examples from statistical mechanics and molecular dynamics. Our main result is that TRI holds in a much wider generality than previously believed, partially explaining why no experimental violation of Onsager relations has so far been reported.
Necessary and sufficient conditions for time reversal symmetry in presence of magnetic fields / Carbone, D.; Rondoni, L.. - In: SYMMETRY. - ISSN 2073-8994. - ELETTRONICO. - 12:8(2020), pp. 1-14. [10.3390/sym12081336]
Necessary and sufficient conditions for time reversal symmetry in presence of magnetic fields
Carbone D.;Rondoni L.
2020
Abstract
Time reversal invariance (TRI) of particles systems has many consequences, among which the celebrated Onsager reciprocal relations, a milestone in Statistical Mechanics dating back to 1931. Because for a long time it was believed that (TRI) dos not hold in presence of a magnetic field, a modification of such relations was proposed by Casimir in 1945. Only in the last decade, the strict traditional notion of reversibility that led to Casimir’s work has been questioned. It was then found that other symmetries can be used, which allow the Onsager reciprocal relations to hold without modification. In this paper we advance this investigation for classical Hamiltonian systems, substantially increasing the number of symmetries that yield TRI in presence of a magnetic field. We first deduce the most general form of a generalized time reversal operation on the phase space of such a system; secondly, we express sufficient conditions on the magnetic field which ensure TRI. Finally, we examine common examples from statistical mechanics and molecular dynamics. Our main result is that TRI holds in a much wider generality than previously believed, partially explaining why no experimental violation of Onsager relations has so far been reported.File | Dimensione | Formato | |
---|---|---|---|
symmetry-12-01336-v2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
325.29 kB
Formato
Adobe PDF
|
325.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2857097