Being able to identify instability regions is an important task for the designers of rotating machines. It allows discarding, since the early design stages, those configurations which may lead to catastrophic failures. Instability can be induced by different occurrences such as an unbalanced disk, torsional, and axial forces on the shaft or periodic variation of system parameters known as "parametric excitation."In this paper, the stability of a Jeffcott rotor, parametrically excited by the time-varying stiffness of the rolling bearings, is studied. The harmonic balance method (HBM) is here applied as an approximate procedure to obtain the well-known "transition curves (TCs)"which separate the stable from the unstable regions of the design parameter space. One major challenge in the HBM application is identifying an adequate harmonic support (i.e., number of harmonics in the Fourier formulation), necessary to produce trustworthy results. A procedure to overcome this issue is here proposed and termed "trained HBM"(THBM). The results obtained by THBM are compared to those computed by Floquet theory, here used as a reference. The THBM proves to be able to produce reliable TCs in a timely manner, compatible with the design process.
Trained Harmonic Balance Method for Parametrically Excited Jeffcott Rotor Analysis / Ghannad Tehrani, Ghasem; Gastaldi, Chiara; Berruti, Teresa M.. - In: JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. - ISSN 1555-1415. - 16:1(2021). [10.1115/1.4048578]
Trained Harmonic Balance Method for Parametrically Excited Jeffcott Rotor Analysis
Ghannad Tehrani, Ghasem;Gastaldi, Chiara;Berruti, Teresa M.
2021
Abstract
Being able to identify instability regions is an important task for the designers of rotating machines. It allows discarding, since the early design stages, those configurations which may lead to catastrophic failures. Instability can be induced by different occurrences such as an unbalanced disk, torsional, and axial forces on the shaft or periodic variation of system parameters known as "parametric excitation."In this paper, the stability of a Jeffcott rotor, parametrically excited by the time-varying stiffness of the rolling bearings, is studied. The harmonic balance method (HBM) is here applied as an approximate procedure to obtain the well-known "transition curves (TCs)"which separate the stable from the unstable regions of the design parameter space. One major challenge in the HBM application is identifying an adequate harmonic support (i.e., number of harmonics in the Fourier formulation), necessary to produce trustworthy results. A procedure to overcome this issue is here proposed and termed "trained HBM"(THBM). The results obtained by THBM are compared to those computed by Floquet theory, here used as a reference. The THBM proves to be able to produce reliable TCs in a timely manner, compatible with the design process.File | Dimensione | Formato | |
---|---|---|---|
Manuscript_accepted.pdf
accesso riservato
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Trained Harmonic Balance Method for Parametrically Excited Jeffcott Rotor Analysis.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.53 MB
Formato
Adobe PDF
|
2.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2854692