This study carries out an experimental characterization of lattice structures that are based on cubic cells fabricated through selective laser melting (SLM) and electron beam melting (EBM). The lattice failure under compressive load is studied as a function of the process typology, material properties, and dimensional parameters of the unit cell. The bulk material is first characterized to evaluate the process stability. Three main failure modes of the lattice are identified, depending on the response of ductile/brittle material and the direction of crack propagation. The relationship between lattice geometrical parameters and mechanical strength is observed. The results of the modeling and experiments are suitable to validate the design of lightweight components built with AM processes. The structural performances related to geometrical features, material properties and technological constraints are well explained for further applications in structural design. The equivalent Young’s module of lattice samples with different cell size has been measured and compared with numerical simulations based on the homogenization method.
Experimental characterization of SLM and EBM cubic lattice structures for lightweight applications / DE PASQUALE, Giorgio; Luceri, Federica; Riccio, Martina. - In: EXPERIMENTAL MECHANICS. - ISSN 0014-4851. - STAMPA. - 59:(2019), pp. 469-482. [10.1007/s11340-019-00481-8]
Experimental characterization of SLM and EBM cubic lattice structures for lightweight applications
Giorgio De Pasquale;
2019
Abstract
This study carries out an experimental characterization of lattice structures that are based on cubic cells fabricated through selective laser melting (SLM) and electron beam melting (EBM). The lattice failure under compressive load is studied as a function of the process typology, material properties, and dimensional parameters of the unit cell. The bulk material is first characterized to evaluate the process stability. Three main failure modes of the lattice are identified, depending on the response of ductile/brittle material and the direction of crack propagation. The relationship between lattice geometrical parameters and mechanical strength is observed. The results of the modeling and experiments are suitable to validate the design of lightweight components built with AM processes. The structural performances related to geometrical features, material properties and technological constraints are well explained for further applications in structural design. The equivalent Young’s module of lattice samples with different cell size has been measured and compared with numerical simulations based on the homogenization method.File | Dimensione | Formato | |
---|---|---|---|
2019 De Pasquale - Luceri - Riccio (Experimental Mechiancs).pdf
accesso riservato
Descrizione: Articolo
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Experimental Mechanics.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2854520